Интеллектуальные игрушки – программируемые роботы конструкторы. Робототехника: с чего начать изучение, где заниматься и каковы перспективы

Работающий на стыке кибернетики, психологии и бихевиоризма (науки о поведении), и инженер, составляющий алгоритмы для промышленных роботизированных комплексов, среди основных инструментов которого - высшая математика и мехатроника, работают в самой перспективной отрасли ближайших лет - робототехнике. Роботы, несмотря на сравнительную новизну термина, издавна знакомы человечеству. Вот лишь несколько фактов из истории развития умных механизмов.

Железные люди Анри Дро

Еще в мифах Древней Греции упоминались механические рабы, созданные Гефестом для выполнения тяжелых и однообразных работ. А первым изобретателем и разработчиком человекоподобного робота стал легендарный Леонардо да Винчи. До наших дней сохранились подробнейшие чертежи итальянского гения, описывающие механического рыцаря, способного имитировать человеческие движения руками, ногами, головой.

Созданию первых автоматических механизмов с программным управлением положили начало в конце XVΙΙΙ века европейские часовые мастера. Наиболее преуспели на этом поприще швейцарские специалисты отец и сын Пьер-Жак и Анри Дро. Ими создана целая серия ("пишущий мальчик", "рисовальщик", "музыкантша") в основе управления которыми лежали часовые механизмы. Именно в честь Анри Дро в дальнейшем все программируемые человекоподобные автоматы стали называть "андроидами".

У истоков программирования

Основы программирования промышленных роботов были заложены на заре XIX века во Франции. Здесь же и были разработаны первые программы для автоматических текстильных станков (прядильных и ткацких). Стремительно растущая армия Наполеона остро нуждалась в обмундировании и, следовательно, тканях. Изобретатель из Лиона Жозеф Жаккар предложил способ быстрой перенастройки ткацкого станка для производства различных видов продукции. Нередко эта процедура требовала огромного количества времени, колоссальных усилий и внимания целого коллектива. Суть нововведения сводилась к использованию картонных карточек с перфорированными отверстиями. Иглы, попадая в просеченные места, необходимым образом смещали нити. Смена карт быстро проводилась оператором станка: новая перфокарта - новая программа - новый тип ткани или узора. Французская разработка стала прообразом современных автоматизированных комплексов, роботов с возможностью программирования.

Идею, предложенную Жаккаром, с восторгом использовали в своих автоматических устройствах многие изобретатели:

  • Начальник статистического управления С. Н. Корсаков (Россия, 1832 г.) - в механизме для сравнивания и анализа идей.
  • Математик Чарльз Бэббидж (Англия, 1834 г.) - в аналитической машине для решения широкого круга математических задач.
  • Инженер (США, 1890 г.) - в устройстве для хранения и обработки статистических данных (табуляторе). Для заметки: в 1911 году компания. Холлерита получила название IBM (International Business Machines).

Перфокарты были основными носителями информации вплоть до 60-х годов прошлого века.

Своим названием интеллектуальные машины обязаны чешскому драматургу В пьесе "R.U.R.", увидевшей свет в 1920 году, писатель назвал роботом искусственного человека, созданного для тяжелых и опасных участков производства (robota (чешск.) - каторга). А что отличает робота от механизмов и автоматических устройств? В отличие от последних, робот не только выполняет определенные действия, слепо следуя заложенному алгоритму, но и способен более тесно взаимодействовать с окружающей средой и человеком (оператором), адаптировать свои функции при изменении внешних сигналов и условий.

Принято считать, что первый действующий робот был сконструирован и реализован в 1928 году американским инженером Р. Уэнсли. Человекоподобный "железный интеллектуал" получил имя Герберт Телевокс. На лавры пионеров претендуют также ученый-биолог Макото Нисимура (Япония, 1929 г.) и английский военнослужащий Уильям Ричардс (1928 г.). Созданные изобретателями антропоморфные механизмы имели схожий функционал: способны были двигать конечностями и головой, выполнять голосовые и звуковые команды, отвечать на простые вопросы. Основным предназначением устройств была демонстрация научно-технических достижений. Очередной виток в развитии технологий позволил в скором времени создать и первых индустриальных роботов.

Поколение за поколением

Разработка робототехники представляет собой непрерывный, поступательный процесс. К настоящему моменту сформировались три ярко выраженных поколения "умных" машин. Каждое характеризуется определенными показателями и сферами применения.

Первое поколение роботов создавалось для узкого вида деятельности. Машины способны выполнять только определенную запрограммированную последовательность операций. Устройства управления роботами, схемотехника и программирование практически исключают автономное функционирование и требуют создания специального технологического пространства с необходимым дополнительным оборудованием и информационно-измерительными системами.

Машины второго поколения называют очувствленными, или адаптивными. Программирование роботов осуществляется с учетом большого набора внешних и внутренних сенсоров. На основе анализа информации, поступающей с датчиков, вырабатываются необходимые управляющие воздействия.

И наконец, третье поколение - интеллектуальные роботы, которые способны:

  • Обобщать и анализировать информацию,
  • Совершенствоваться и самообучаться, накапливать навыки и знания,
  • Распознавать образы и изменения ситуации, и в соответствии с этим выстраивать работу своей исполнительной системы.

В основе искусственного интеллекта лежит алгоритмическое и программное обеспечение.

Общая классификация

На любой представительной современной выставке роботов многообразие "умных" машин способно поразить не только простых обывателей, но и специалистов. А какие бывают роботы? Наиболее общую и содержательную классификацию предложил советский ученый А. Е. Кобринский.

По назначению и выполняемым функциям роботов подразделяют на производственно-промышленные и исследовательские. Первые, в соответствии с характером выполняемых работ, могут быть технологическими, подъемно-транспортными, универсальными или специализированными. Исследовательские предназначены для изучения областей и сфер, опасных или недоступных для человека (космическое пространство, земные недра и вулканы, глубоководные слои мирового океана).

По типу управления можно выделить биотехнические (копирующие, командные, киборги, интерактивные и автоматические), по принципу - жестко программируемые, адаптивные и гибко программируемые. Бурное развитие современной предоставляет разработчикам практически безграничные возможности при проектировании интеллектуальных машин. Но отличное схемное и конструктивное решение будет служить лишь дорогостоящей оболочкой без соответствующего программного и алгоритмического обеспечения.

Чтобы кремний микропроцессора смог взять на себя функции мозга робота, необходимо "залить" в кристалл соответствующую программу. Обычный человеческий язык не способен обеспечить четкую формализацию задач, точность и надежность их логической оценки. Поэтому требуемая информация представляется в определенном виде с помощью языков программирования роботов.

В соответствии с решаемыми задачами управления выделяют четыре уровня такого специально созданного языка:

  • Низший уровень используется для управления исполнительными приводами в виде точных значений линейного или углового перемещения отдельных звеньев интеллектуальной системы,
  • Уровень манипулятора позволяет осуществлять общее управление всей системой, позиционируя рабочий орган робота в координатном пространстве,
  • Уровень операций служит для формирования рабочей программы, путем указания последовательности необходимых действий для достижения конкретного результата.
  • На высшем уровне - заданий - программа без детализации указывает что надо сделать.

Робототехники стремятся свести программирование роботов к общению с ними на языках высшего уровня. В идеале оператор ставит задачу: "Произвести сборку двигателя внутреннего сгорания автомобиля" и ожидает от робота полного выполнения задания.

Языковые нюансы

В современной робототехнике программирование роботов развивается по двум векторам: роботоориентированное и проблемно ориентированное программирование.

Наиболее распространенные роботоориентированные языки - AML и AL. Первый разработан фирмой IBM только для управления интеллектуальными механизмами собственного производства. Второй - продукт специалистов Стэндфордского университета (США) - активно развивается и оказывает существенное влияние на формирование новых языков этого класса. Профессионал легко разглядит в языке характерные черты Паскаля и Алгола. Все языки, ориентированные на роботов, описывают алгоритм, как последовательность действий "умного" механизма. В связи с этим программа зачастую выходит очень громоздкой и неудобной в практической реализации.

При программировании роботов на проблемно ориентированных языках, в программе указывается последовательность не действий, а целей или промежуточных позиций объекта. Наиболее популярным в этом сегменте является язык AUTOPASS (IBM), в котором состояние рабочей среды представлено в виде графов (вершины - объекты, дуги - связи).

Обучение роботов

Любой современный робот представляет собой обучаемую и адаптивную систему. Вся необходимая информация, включающая знания и умения, передается ей в процессе обучения. Это осуществляется, как непосредственным занесением в память процессора соответствующих данных (детальное программирование - семплинг), так и с использованием сенсоров робота (методом наглядной демонстрации) - все движения и перемещения механизмов робота заносятся в память и затем воспроизводятся в рабочем цикле. Обучаясь, система перестраивает свои параметры и структуру, формирует информационную модель внешнего мира. Это и есть основное отличие роботов от автоматизированных линий, промышленных автоматов с жесткой структурой и других традиционных средств автоматизации. Перечисленные методы обучения обладают существенными недостатками. Например, при семплинге перенастройка требует определенного времени и труда квалифицированного специалиста.

Весьма перспективной выглядит программа для программирования роботов, представленная разработчиками Лаборатории информационных технологий при Массачусетском технологическом институте (CSAIL MIT) на международной конференции промышленной автоматизации и робототехники ICRA-2017 (Сингапур). Созданная ими платформа C-LEARN обладает достоинствами обоих методов. Она предоставляет роботу библиотеку элементарных движений с заданными ограничениями (например, усилие хвата для манипулятора в соответствии с формой и жесткостью детали). В то же время, оператор демонстрирует роботу ключевые движения в трехмерном интерфейсе. Система, исходя из поставленной задачи, формирует последовательность операций для выполнения рабочего цикла. C-LEARN позволяет переписать существующую программу для робота другой конструкции. Оператору при этом не требуются углубленные знания в области программирования.

Робототехника и искусственный интеллект

Специалисты Оксфордского университета предупреждают, что в ближайшие два десятилетия машинные технологии заменят более половины сегодняшних рабочих мест. Действительно, роботы давно уже трудятся не только на опасных и трудных участках. Например, программирование значительно потеснило брокеров-людей на мировых биржах. Несколько слов об искусственном интеллекте.

В представлении обывателя это антропоморфный робот, способный заменить человека во многих сферах жизни. Отчасти так и есть, но в большей степени искусственный интеллект - это самостоятельная отрасль науки и технологии, с помощью компьютерных программ, моделирующая мышление "Homo sapiens", работу его мозга. На сегодняшнем этапе развития ИИ больше помогает людям, развлекает их. Но, по прогнозам экспертов, дальнейший прогресс в области робототехники и искусственного интеллекта может поставить перед человечеством целый ряд морально-этических и юридических вопросов.

В этом году на выставке роботов в Женеве самый совершенный андроид София заявила, что учится быть человеком. В октябре София впервые в истории искусственного интеллекта была признана гражданкой Саудовской Аравии с полноценными правами. Первая ласточка?

Основные тенденции робототехники

В 2017 году специалисты цифровой индустрии отметили несколько выдающихся решений в области технологий виртуальной реальности. Не осталась в стороне и робототехника. Очень перспективным выглядит направление совершенствующее управление сложным робомеханизмом через виртуальный шлем (VR). Эксперты пророчат востребованность такой технологии в бизнесе и промышленности. Вероятные сценарии использования:

  • Управление беспилотной техникой (складскими погрузчиками и манипуляторами, дронами, трейлерами),
  • Проведение медицинских исследований и хирургических операций,
  • Освоение труднодоступных объектов и областей (дно океана, полярные области). Кроме того, программирование роботов позволяет им осуществлять и автономную работу.

Еще один популярный тренд - connected car. Совсем недавно представители гиганта Apple заявили о старте разработок собственного "беспилотника". Все больше фирм выражают свою заинтересованность в создании машин, способных самостоятельно перемещаться по пересеченным трассам, сохраняя грузы и оборудование.

Возрастающая сложность алгоритмов программирования роботов и машинного обучения предъявляет повышенные требования к вычислительным ресурсам и, следовательно, к "железу". По-видимому, оптимальным выходом в этом случае будет подключение устройств к облачной инфраструктуре.

Важное направление - когнитивная робототехника. Стремительный рост количества "умных" машин заставляет разработчиков все чаще задумываться о том, как научить роботов слаженно взаимодействовать.

Многие робототехнические контроллеры реализованы с использованием языков программирования специального назначения. Например, многие программы для обобщающей архитектуры были реализованы на языке поведения , который был определен Бруксом. Этот язык представляет собой язык управления в реальном времени на основе правил, результатом компиляции которого становятся контроллеры AFSM . Отдельные правила этого языка, заданные с помощью синтаксиса, подобного Lisp , компилируются в автоматы AFSM, а группы автоматов AFSM объединяются с помощью совокупности механизмов передачи локальных и глобальных сообщений.

Так же как и обобщающая архитектура, язык поведения является ограниченным, поскольку он нацелен на создание простых автоматов AFSM с относительно узким определением потока связи между модулями. Но в последнее время на базе этой идеи проведены новые исследования, которые привели к созданию целого ряда языков программирования, аналогичных по своему духу языку поведения, но более мощных и обеспечивающих более быстрое выполнение.

Одним из таких языков является универсальный робототехнический язык , или сокращенно GRL (Generic Robot Language ). GRL- это функциональный язык программирования для создания больших модульных систем управления. Как и в языке поведения, в GRL в качестве основных конструктивных блоков используются конечные автоматы. Но в качестве настройки над этими автоматами язык GRL предлагает гораздо более широкий перечень конструкций для определения коммуникационного потока и синхронизации ограничений между различными модулями, чем язык поведения. Программы на языке GRL компилируются в эффективные программы на таких языках команд, как С .

Еще одним важным языком программирования (и связанной с ним архитектурой) для параллельного робототехнического программного обеспечения является система планирования реактивных действий, или сокращенно RAPS (Reactive Action Plan System) . Система RAPS позволяет программистам задавать цели, планы, связанные с этими целями (или частично определять политику), а также задавать условия, при которых эти планы по всей вероятности будут выполнены успешно.

Крайне важно то, что в системе RAPS предусмотрены также средства, позволяющие справиться с неизбежными отказами, которые возникают в реальных робототехнических системах. Программист может задавать процедуры обнаружения отказов различных типов и предусматривать процедуру устранения исключительной ситуации для каждого типа отказа. В трехуровневых архитектурах система RAPS часто используется на исполнительном уровне, что позволяет успешно справляться с непредвиденными ситуациями, не требующими перепланирования.

Существует также несколько других языков, которые обеспечивают использование в роботах средств формирования рассуждений и средств обучения. Например, Gologпредставляет собой язык программирования, позволяющий обеспечить безукоризненное взаимодействие средств алгоритмического решения задач (планирования) и средств реактивного управления, заданных непосредственно с помощью спецификации.

Программы на языке Golog формулируются в терминах ситуационного исчисления с учетом дополнительной возможности применения операторов недетерминированных действий. Кроме спецификации программы управления с возможностями недетерминированных действий, программист должен также предоставить полную модель робота и его среды.

Как только программа управления достигает точки недетерминированного выбора, вызывается планировщик (заданный в форме программы доказательства теорем) для определения того, что делать дальше. Таким образом программист может определять частично заданные контроллеры и опираться на использование встроенных планировщиков для принятия окончательного выбора плана управления.

Основной привлекательной особенностью языка Golog является предусмотренная в нем безукоризненная интеграция средств реактивного управления и алгоритмического управления. Несмотря на то что при использовании языка Golog приходится соблюдать строгие требования (полная наблюдаемость, дискретные состояния, полная модель), с помощью этого языка были созданы высокоуровневые средства управления для целого ряда мобильных роботов, предназначенных для применения внутри помещений.

Язык «JSk CES (сокращение от C++ for embedded systems - C++ для встроенных систем) - это языковое расширение C++, в котором объединяются вероятностные средства и средства обучения. В число типов данных CES входят распределения вероятностей, что позволяет программисту проводить расчеты с использованием неопределенной информации, не затрачивая тех усилий, которые обычно связаны с реализацией вероятностных методов.

Еще более важно то, что язык CES обеспечивает настройку робототехнического программного обеспечения с помощью обучения на основании примеров, во многом аналогично тому, что осуществляется в алгоритмах обучения. Язык CES позволяет программистам оставлять в коде «промежутки», которые заполняются обучающими функциями; обычно такими промежутками являются дифференцируемые параметрические представления, такие как нейронные сети. В дальнейшем на отдельных этапах обучения, для которых учитель должен задать требуемое выходное поведение, происходит индуктивное обучение с помощью этих функций. Практика показала, что язык CES может успешно применяться в проблемных областях, характерных для частично наблюдаемой и непрерывной среды.

Язык ALisp представляет собой расширение языка Lisp . Язык ALisp позволяет программистам задавать недетерминированные точки выбора, аналогичные точкам выбора в языке Golog. Но в языке ALisp для принятия решений применяется не программа доказательства теорем, а средства определения правильного действия с помощью индуктивного обучения, в которых используется обучение с подкреплением. Поэтому язык ALisp может рассматриваться как удобный способ внедрения знаний о проблемной области в процедуру обучения с подкреплением, особенно знаний об иерархической структуре «процедур» желаемого поведения. До сих пор язык ALispприменялся для решения задач робототехники только в имитационных исследованиях, но может стать основой многообещающей методологии создания роботов, способных к обучению в результате взаимодействия со своей средой.

Программирование промышленных роботов в SprutCAM

Николай Конов,
директор компании KROKK, d.o.o., Словения, г.Любляна (www.krokk.si)

Индустриальные роботы в современной промышленности

Мировой рынок роботов

Применение индустриальных роботов во всем мире каждый год увеличивается. К 2018 году более 1,3 млн роботов будут введены в эксплуатацию по всему миру. Средний показатель плотности применения роботов в производстве, по данным 2014 года, равен 66 единицам на 10 тыс. работников. В 21 стране этот показатель выше среднего (рис. 1).

В них входит большинство индустриально развитых страх Европы, США, Канада и Азиатский регион (Южная Корея, Япония, Тайвань). Словения занимает в этом списке не последнее место и с показателем 100 роботов на 10 тыс. человек занимает лидирующие позиции по автоматизации производства. Наибольшее применение роботы находят в автомобильной промышленности, где наблюдается более высокая плотность роботизации производства (рис. 2).

Области применения роботов

Самой распространенной областью применения роботов является выполнение повторяющихся операций на производственных линиях, таких как сварка, перемещение деталей, покраска, сборка и др. Как правило, роботы на таких линиях действуют циклически по программе и выполняют одни и те же операции, заменяя рутинный человеческий труд. Это позволяет максимально автоматизировать производственный процесс, уменьшить фактор человеческой ошибки и максимально увеличить производительность. Но для современных роботов выполнение простых операций по перемещению — не предел их возможностей.

Робот, благодаря наличию шести степеней свободы, может также делать сложные многоосевые перемещения вдоль необходимой траектории, выполняя, таким образом, любую обработку, которая до этого была возможна только на специализированных станках. Это становится реальным прежде всего вследствие многолетней эволюции индустриальных роботов и контроллеров. Индустриальные роботы стали более точными и жесткими — возможно позиционирование робота с точностью до нескольких сотых долей миллиметра. Совершеннее стали и контроллеры роботов — они позволяют управлять несколькими роботами одновременно, а также интерполировать перемещения робота с дополнительными линейными и поворотными осями. Всё это создало предпосылки для использования роботов в тех отраслях, где до сих пор было возможно применение только специализированных станков с ЧПУ.

Возможности индустриальных роботов в обработке материалов

Тенденция применения индустриальных роботов для различных видов обработки материалов приобретает всё большую популярность в мировой промышленности. И этому есть объяснение: роботы имеют ряд преимуществ перед классическими станками с ЧПУ, такие как: шесть степеней свободы; большая зона обработки; использование того же робота для захвата заготовки; более низкая стоимость; использование дополнительных осей позиционирования детали.

Разберем эти преимущества и рассмотрим конкретные примеры и области применения индустриального робота для обработки материалов. Конечно, при помощи роботов можно заменить далеко не все типы обработки, так как имеют место ограничения по точности и жесткости. Далее будут рассмотрены примеры применения роботов в тех областях, где это экономически целесообразно и удовлетворяет требуемому качеству конечных изделий.

Доступная пятиосевая обработка

Станки с ЧПУ, позволяющие обрабатывать деталь по пяти степеням свободы, безусловно, являются более дорогими по сравнению с простыми трехосевыми станками. А если такой станок предназначен для обработки крупногабаритных деталей, то его стоимость возрастает в геометрической прогрессии.

Все индустриальные роботы, так же как и пятиосевые станки, изначально имеют возможность позиционировать инструмент, но стоимость такого решения иногда в разы меньше сходного по характеристикам станка. В результате сложная пятиосевая обработка изделий, нетребовательных к точности, становится доступной даже для малых предприятий. Яркий пример тому — художественная обработка камня (рис. 3).

Художественная обработка материалов — не только камня, но и дерева, гипса, пластика и др. — одна из наиболее подходящих областей для применения роботов. Здесь не требуется высокая точность, при этом, как правило, заготовки бывают довольно внушительных размеров и всегда имеют поверхность сложной формы. Применение робота позволяет выполнять обработку любой сложности и полностью в многоосевом режиме.

Большая зона обработки

Очень часто изделие, которое необходимо обработать, требует от оборудования больших зон перемещения. Примерами могут служить корпуса лодок, шасси прицепов, прототипирование крупногабаритных изделий, подготовка форм для литья и др. Для обработки таких изделий необходимы специализированные станки с большими зонами перемещения, стоимость которых соизмерима с их размерами.

Однако робот может быть размещен на подвижной платформе, длина перемещения которой может быть практически любой. Современные контроллеры промышленных роботов позволяют выполнять интерполяцию движений робота и дополнительно до трех линейных осей перемещения самого робота. Это дает возможность применения промышленного робота практически в неограниченном пространстве. Пример — роботизированная ячейка обработки корпуса лодки (рис. 4).

Обработка корпуса лодки требует не только сложной ориентации инструмента, но и большой зоны перемещения. Применение робота, установленного на подвижном портале, позволяет легко обработать весь корпус лодки. При этом перемещения робота вдоль портала полностью синхронизированы с движениями суставов и позволяют инструменту перемещаться вдоль всего корпуса, поддерживая правильную ориентацию.

Многоцелевое использование робота

Промышленный робот может в одном и том же технологическом процессе использоваться как для захвата заготовки, так и для перемещения ее через инструмент. Так называемая схема «заготовка к инструменту» позволяет реализовать целую технологическую цепочку обработки изделия, а также перемещения изделия в необходимое место для дальнейших операций всего на одном роботе (рис. 5).

После формирования сиденья стула в термопластавтомате необходимо выполнить обрезку, шлифовку граней и полировку сиденья стула. Все эти операции выполняются последовательно с захватом сиденья роботом, в то время как инструменты находятся на фиксированных позициях.

Дополнительные степени свободы

Современные контроллеры роботов могут управлять не только дополнительными линейными перемещениями самого робота, но и дополнительными осями вращения рабочего стола с закрепленной на ней заготовкой. Такое решение задает дополнительную степень свободы заготовки и позволяет использовать более компактный робот для обработки заготовки со всех сторон. Естественно, управление дополнительными осями полностью синхронизировано с движениями суставов робота (рис. 6).

Для сварки бака со всех сторон используется дополнительная поворотная ось, которая управляется синхронно с осями робота и позволяет выполнить операцию сразу со всех сторон.

Таким образом, современные промышленные роботы могут использоваться для многих операций обработки там, где раньше это невозможно было представить: фрезерование (метал, камень, дерево, резина, пластик и др.), шлифовка, полировка, обрезка, снятие заусенцев, резание (плазменное, водяное, лазерное). Такие решения находят применение во многих отраслях промышленности и доступны даже для малого бизнеса, что позволяет ему развиваться и при небольших инвестициях.

SprutCAM для программирования роботов

Стандартные возможности создания программ

Все вышеперечисленные примеры требуют программирования сложных перемещений инструмента и, как следствие, осей робота. При классическом программировании роботов задание перемещений происходит последовательно — от точки к точке. Такой подход очень трудно применить для сложных траекторий, связанных еще и с ориентацией инструмента. Подобное программирование также потребует много времени, в течение которого робот фактически будет занят и не будет задействован в производственном процессе. Многие производители предоставляют возможность создания программ для робота в G-коде или в близком формате, когда программист учитывает лишь координаты центральной точки инструмента и создает программу в обычном декартовом пространстве, а положение фактических осей робота пересчитывается контроллером. В этом случае можно провести аналогию со станками с ЧПУ, которые имеют схожие возможности.

Простые перемещения запрограммировать таким способом возможно, но когда речь идет о сложном формообразовании или использовании дополнительных осей, то выполнение задачи за разумный промежуток времени становится проблематичным, при этом написание такой программы вручную — довольно сложная задача, а иногда и практически невозможная.

Применение CAM-системы для программирования

Логичным выходом из данной ситуации, следуя аналогии с классическими станками, в которых для создания программ обработки сложных форм применяют CAM-системы, является применение CAM для программирования робота. Действительно, создание траектории перемещения инструмента ничем не отличается от создания ее для станка. Разница лишь в том, что, впоследствии движения инструмента должны быть пересчитаны в движения осей робота и дополнительных осей. Этой возможностью обладает далеко не каждая CAM-система.

Кроме того, CAM-система должна понимать кинематику робота и учитывать все его возможности для позиционирования инструмента, избегать сингулярности и коллизий.

Компания «СПРУТ-Технология» уже более 20 лет занимается разработкой программного обеспечения SprutCAM. Одной из опций данного продукта является возможность создания программ для промышленных роботов на основе загружаемой 3D-модели изделия.

Используя множество стратегий обработки, программист может задать необходимые траектории перемещения инструмента. SprutCAM, основываясь на реальной кинематике робота, вычислит положение и ориентацию инструмента в каждой точке, рассчитает координаты каждой из осей робота. Детализированная симуляция позволит полностью смоделировать реальное поведение робота, избежать коллизий и увидеть результат обработки. Инструменты по оптимизации положения суставов робота дают возможность наилучшим образом определить оптимальные координаты осей для каждой точки.

Функции SprutCAM

Стратегии обработки

Будучи многофункциональной CAM-системой, SprutCAM содержит большое количество стратегий для любых видов обработки: фрезерования (черновые, чистовые, многоосевые операции); резания; сварки (рис. 7).

Кроме того, SprutCAM обладает уникальными стратегиями аддитивной обработки и обработки инструментом типа «нож». Все эти стратегии возможно использовать при программировании робота.

Поддержка

В SprutCAM уже реализована поддержка большинства известных производителей роботов: известны кинематические модели и готовы постпроцессоры. Уже выполнено и полностью отлажено для пользователя взаимодействие с роботами ведущих производителей (рис. 8). Внедрение продукта под конкретную задачу занимает минимальное количество времени.

Преимущества использования SprutCAM для программирования роботов

  • Offline-программирование роботов увеличивает полезную загрузку;
  • гораздо более быстрое создание программ, чем от точки к точке;
  • легкое программирование роботов с дополнительными осями;
  • автоматическая оптимизация и поиск безаварийных перемещений;
  • реалистичная симуляция и проверка программ;
  • готовые постпроцессоры для генерации программы на языке контроллера;
  • создание программ такое же простое, как при программировании станков с ЧПУ.  

Программирование виртуальных роботов на языке Java

Робототехника давным давно вышла за пределы научно-фантастических романов и в настоящее время является одной из движущих сил, определяющих прогресс во многих областях, таких как автоматизация производства, медицина, космос и т.д. Важную роль в робототехнике играют программные симуляторы, т.к. они не только упрощают работу инженеров, но и позволяют исследователям испытывать новейшие алгоритмы искусственного интеллекта (AI) и машинного обучения. Одним из таких симуляторов является Simbad – проект с открытым кодом, разработанный на основе технологии Java 3D (см. ). В данной статье мы расскажем, как программировать виртуальных роботов, используя инструментарий Simbad, для получения лучшего представления об одной из философий проектирования роботов – архитектуре поглощения (subsumption architecture ).

Начало статьи посвящено краткому обзору робототехники и концепции архитектуры поглощения. Затем мы перейдем к инструментарию Simbad и расскажем, как, используя его, можно реализовать данную архитектуру. После этого придет время создания простого робота в соответствии с описанной архитектурой. В конце концов, вы окунетесь в занимательный мир лабиринтов и создадите второго робота, который, подобно Гомеру из Симпсонов (см. ), сможет самостоятельно из них выбираться. Разумеется, созданные роботы будут “виртуальными”, т.е. будут жить в виртуальной среде Simbad.

Программирование роботов

На данный момент не существует единого, всеми признаваемого определения термина “робот”. В нашей статье, под роботом мы будем подразумевать нечто, состоящее как минимум из следуюших компонентов:

  • Набора сенсоров
  • Программы, определяющей поведение робота
  • Набора приводов и эффекторов

Традиционная робототехника

Под традиционной робототехникой обычно понимается период развития данной области вплоть до 1986 года. Для того времени было характерно представление о роботе, как о механизме, управляемом центральным контроллером (мозгом), который постоянно обновляет свое представление об окружающем мире и вырабатывает план поведения, исходя из этого представления. Новая информация о мире поступает от сенсоров, например, осязания, света, ультразвука и т.д. Мозг анализирует всю информацию от сенсоров и обновляет представление об окружающей среде, а затем принимает решение о том или ином действии. Все действия выполняются с помощью приводов и эффекторов. Первые обычно представляют собой некие двигатели, подсоединенные к устройствам, непосредственно взаимодействующим с окружающим миром — эффекторам. Примерами последних могут служить колеса или руки. При этом иногда под приводами (actuators) понимаются как сами приводы, так и эффекторы.

Таким образом, традиционный робот получает данные от множества сенсоров, комбинирует эти данные в процессе обновления картины мира, затем вырабатывает план действий на основе данной картины, и наконец, приводит его в исполнение. К сожалению, данный подход сопряжен с определенными трудностями. Во-первых, он требует большого объема вычислений. Во-вторых, поддержка актуальной картины окружающего мира – задача очень сложная, т.к. мир меняется постоянно. При этом известно, что многие организмы, например, насекомые, благополучно существуют и без поддержки полной картины мира, более того, даже не имея памяти как таковой. Так может стоит попробовать перенять их подход к функционированию? Подобные размышления стали отправной точкой нового течения в робототехнике, доминирующего в настоящее время. Оно получило название “поведенческая робототехника” (behavior-based robotics - BBR).

Архитектура поглощения

Одним из способов организации BBR-роботов является архитектура поглощения, предложенная в 1986 г. Родни Бруксом (Rodney A. Brooks) — в настоящее время главой лаборатории искусственного интеллекта в Массачусетском Технологическом Институте (MIT) — в его фундаментальной статье под названием “Слоны не играют в шахматы” (см. ). Согласно Бруксу, поведенческие роботы можно рассматривать как набор простых и независимых поведенческих узлов (behaviors), каждый из которых определяется двумя вещами – тем, что вызывает данное поведение (как правило, информация, поступающая от сенсоров), и тем действием, что является его результатом (как правило, выполненным с помощью эффектора). Поведения могут наслаиваться друг на друга, а также конфликтовать между собой. В этом случае, в действие вступает специальный механизм арбитража , который решает, какое поведение в данный момент является приоритетным. Ключевым моментом является то, что поведение робота, как единого целого, не закладывается заранее, а вырисовывается из взаимодействия его поведенческих узлов. Более того, по мнению сторонников BBR, глобальное поведение является чем-то большим, чем просто суперпозицией его частей. Оно поглощает каждое из локальных, низкоуровневых поведений. В целом, идея заключается в том, что вместо проектирования робота и точного описания его поведения во всех ситуациях, можно просто добавлять поведенческие узлы и смотреть, что получится в результате.

Simbad: среда для моделирования роботов

LEGO Mindstorms

В данной статье рассматривается создание программных агентов (ботов), но если вас интересуют реальные физические роботы, то обратите внимание на LEGO Mindstorms – замечательный инструментарий для робототехника.

Слоган в штаб-квартире LEGO Mindstorms гласит: “Мы сделаем для робототехники то, что iPod сделал для музыки” ("We will do for robotics what iPod did for music"). Первая версия Mindstorms была представлена в 1998 г. и сразу же превзошла ожидания LEGO по объему продаж. Цена комплекта ($250) может показаться слегка завышенной, но не забывайте, что столько же стоит iPod Classic, а он есть практически у каждого .

При этом iPod не предоставляет собой такого интереса для взлома как Mindstorms. Стоило выйти первому релизу Mindstorms, как различного рода хакеры начали взламывать и анализировать блоки RCX, являющиеся “мозгами” роботов. LEGO пребывала в некотором недоумении и сначала не могла решить, оставить ли все как есть или же выпустить официальное требование прекратить подобные действия. К чести руководства компании, они решили предоставить хакерам полную свободу действий в отношении Mindstorms.

Это привело к расцвету сообщества Mindstorms (см. ). Одним из следствий стало стороннее портирование платформы Mindstorms под другие языки, такие как C и Java, в то время, как сам инструментарий изначально поставлялся только вместе с графическим языком программирования NXT-G. В итоге, более половины пользователей инструментария – это взрослые специалисты.

Simbad предназначен для программного моделирования роботов. Согласно Web-странице проекта, Simbad “предоставляет программные средства для разработки роботов, описания их воздействия на окружающий мир, а так же использования сенсоров. Simbad был в первую очередь разработан для исследователей, которым необходим простой инструментарий для изучения ситуационного искусственного интеллекта, машинного обучения и алгоритмов AI вообще, особенно применительно к автономным роботам и агентам”.

Simbad был разработан на Java Луи Уге (Louis Hugue) и Николя Бредешем (Nicolas Bredeche). Проект размещен на сервере SourceForge.net и может свободно использоваться или модифицироваться в соответствии с лицензией GNU GPL (General Public License).

Технические подробности

Мир в среде Simbad может содержать как агентов (роботов), так и различные неодушевленные предметы, такие как, ящики, стены, источники света и т.д. Время в этом мире дискретно, т.е. разбито на интервалы. Simbad включает в себя планировщик, распределяющий время между агентами. Аналогично реальным роботам, агенты Simbad имеют как сенсоры (датчики расстояния, осязания, света и т.д.), так и приводы (как правило, колеса). В любой отведенный ему момент времени, робот может выполнять какое-то действие.

Классы, реализующие агентов, должны переопределять метод performBehavior() , который описывает их поведение. Внутри этого метода робот может анализировать поступающую от сенсоров информацию и изменять вращательную и поступательную составляющие скорости движения. На исполнение метода performBehavior() отводится короткий промежуток времени, поэтому нельзя отдавать такие команды, как, например, “продвинуться вперед на один метр”. Для того чтобы обойти это ограничение как правило приходится постоянно контролировать состояние, в котором находится робот. Кроме этого можно использовать таймер для отслеживания количества временных интервалов, в течение которых робот находился в текущем состоянии.

Simbad API

В примерах к данной статье в основном затрагиваются вопросы, связанные со следующими двумя пакетами, входящими в состав Simbad API:

  • simbad.sim : Классы данного пакета описывают как самих роботов, так и окружающий их мир. Основными классами являются:
    • Agent: Сами роботы.
    • Arch: Арки, которые роботы могут объезжать либо проезжать под ними.
    • Box: Описывают препятствия на пути робота.
    • CameraSensor: Позволяет получать доступ к картине окружающего мира с точки зрения робота.
    • EnvironmentDescription: Описывает среду, в которую можно добавлять как роботов, так и неодушевленные объекты, например, стены и другие препятствия.
    • LampActuator: Фары, которые можно добавлять к своему роботу.
    • LightSensor: Сенсоры света.
    • RangeSensorBelt: Набор датчиков расстояния, которые могут быть расположены по периметру робота.
    • RobotFactory: Используется для добавления различных сенсоров к роботу.
    • Wall: Еще один тип препятствия для движения робота.
  • simbad.gui : Классы из данного пакета отображают самого робота и позволяют его контролировать. Основным классом являются следующий:
    • Simbad: Окно, отображающее картину мира робота, информацию, поступающую с его сенсоров, а так же управляющие элементы.

Реализация архитектуры поглощения с помощью Simbad

Румба

В то время как я пишу эти строки, Румба (Roomba) пылесосит ковер у меня под ногами (при этом периодически наталкиваясь на котенка). Румба – это робот, разработанный компанией iRobot, основанной тремя выпускниками MIT: Родни Бруксом, Колином Энглом (Colin Angle) и Хелен Грейнер (Helen Greiner). Он был создан в согласии с принципами архитектуры поглощения и предоставляет открытый интерфейс, позволяющий менять его поведение самым произвольным образом. Книга Тода Курта (Tod E. Kurt) “Взламывая Румбу” рассказывает о множестве таких возможностей (см. ).

Реализовывать архитектуру поглощения на основе Simbad мы начнем с объявления класса-потомка Agent под названием BehaviorBasedAgent . Каждый экземпляр данного класса будет содержать массив поведений (объектов типа Behavior), а так же булеву матрицу, хранящую информацию об их попарном поглощении.

private Behavior behaviors; private boolean suppresses;

Класс BehaviorBasedAgent выступает в роли планировщика поведений. В листинге 1 приведен фрагмент кода, итерирующего по массиву поведений и регулирующего их запуск. При этом переменная currentBehaviorIndex используется для хранения ссылки на поведение, которое должно быть активировано на следующем шаге алгоритма.

Листинг 1. Цикл для поочередной активации поведений и разрешения конфликтов
protected void performBehavior() { boolean isActive = new boolean; for (int i = 0; i < isActive.length; i++) { isActive[i] = behaviors[i].isActive(); } boolean ranABehavior = false; while (!ranABehavior) { boolean runCurrentBehavior = isActive; if (runCurrentBehavior) { for (int i = 0; i < suppresses.length; i++) { if (isActive[i] && suppresses[i]) { runCurrentBehavior = false; break; } } } if (runCurrentBehavior) { if (currentBehaviorIndex < behaviors.length) { Velocities newVelocities = behaviors.act(); this.setTranslationalVelocity(newVelocities .getTranslationalVelocity()); this .setRotationalVelocity(newVelocities .getRotationalVelocity()); } ranABehavior = true; } if (behaviors.length > 0) { currentBehaviorIndex = (currentBehaviorIndex + 1) % behaviors.length; } } }

Отметьте, что метод performBehavior() перегружает аналогичный метод в классе simbad.sim.Agent .

В классе поведения Behavior объявлено два абстрактных (abstract) метода:

  • isActive() : Метод возвращает булево значение, показывающее, должно ли данное поведение быть активировано в данный момент времени, учитывая информацию, поступающую от сенсоров. При этом все экземпляры класса Behavior имеют доступ к общему набору сенсоров.
  • act() : Метод возвращает новые значения поступательной и вращательной скорости (именно в таком порядке), являющиеся результатом активации поведения.

Пример блуждающего робота, притягивающегося к источникам света

Теперь пришло время создать программного робота (или бота), который будет включать 4 нижеперечисленных поведения, хранящихся в порядке убывания приоритета. Код бота показан в листингах со второго по пятый (код примеров к данной статье доступен для ).

  • Avoidance: Изменяет направление движения после столкновения или в попытке предотвратить столкновение.
  • LightSeeking: Направляет движение в сторону источника света.
  • Wandering: Периодически меняет направление движения произвольным образом.
  • StraightLine: Направляет движение по прямой.
Листинг 2. Класс Avoidance (на основе демонстрационного примера SingleAvoiderDemo.java из поставки Simbad)
public boolean isActive() { return getSensors().getBumpers().oneHasHit() || getSensors().getSonars().oneHasHit(); } public Velocities act() { double translationalVelocity = 0.8; double rotationalVelocity = 0; RangeSensorBelt sonars = getSensors().getSonars(); double rotationalVelocityFactor = Math.PI / 32; if (getSensors().getBumpers().oneHasHit()) { // Произошло столкновение translationalVelocity = -0.1; rotationalVelocity = Math.PI / 8 - (rotationalVelocityFactor * Math.random()); } else if (sonars.oneHasHit()) { // Считывание показаний эхолокаторов double left = sonars.getFrontLeftQuadrantMeasurement(); double right = sonars.getFrontRightQuadrantMeasurement(); double front = sonars.getFrontQuadrantMeasurement(); // Препятствие близко if ((front < 0.7) || (left < 0.7) || (right < 0.7)) { double maxRotationalVelocity = Math.PI / 4; if (left < right) rotationalVelocity = -maxRotationalVelocity - (rotationalVelocityFactor * Math.random()); else rotationalVelocity = maxRotationalVelocity - (rotationalVelocityFactor * Math.random()); translationalVelocity = 0; } else { rotationalVelocity = 0; translationalVelocity = 0.6; } } return new Velocities(translationalVelocity, rotationalVelocity); }
Листинг 3. Класс LightSeeking (на основе демонстрационного примера LightSearchDemo.java из поставки Simbad)
public boolean isActive() { float llum = getSensors().getLightSensorLeft().getAverageLuminance(); float rlum = getSensors().getLightSensorRight().getAverageLuminance(); double luminance = (llum + rlum) / 2.0; // Активизироваться если источник света неподалеку return luminance > LUMINANCE_SEEKING_MIN; } public Velocities act() { // Повернуть в сторону источника света float llum = getSensors().getLightSensorLeft().getAverageLuminance(); float rlum = getSensors().getLightSensorRight().getAverageLuminance(); double translationalVelocity = 0.5 / (llum + rlum); double rotationalVelocity = (llum - rlum) * Math.PI / 4; return new Velocities(translationalVelocity, rotationalVelocity); }
Листинг 4. Класс Wandering
public boolean isActive() { return random.nextDouble() < WANDERING_PROBABILITY; } public Velocities act() { return new Velocities(0.8, random.nextDouble() * 2 * Math.PI); }
Листинг 5. Класс StraightLine class
public boolean isActive() { return true; } public Velocities act() { return new Velocities(0.8, 0.0); }

В листинге 6 показано поглощение одних поведений другими.

Листинг 6. Объявление булевой матрицы, описывающей попарное поглощение поведений
private void initBehaviorBasedAgent(BehaviorBasedAgent behaviorBasedAgent) { Sensors sensors = behaviorBasedAgent.getSensors(); Behavior behaviors = { new Avoidance(sensors), new LightSeeking(sensors), new Wandering(sensors), new StraightLine(sensors), }; boolean subsumes = { { false, true, true, true }, { false, false, true, true }, { false, false, false, true }, { false, false, false, false } }; behaviorBasedAgent.initBehaviors(behaviors, subsumes); }

В данном примере набор поведений полностью упорядочен в соответствии с приоритетом. В общем случае, это необязательно.

В качестве упражнения вы можете попробовать реализовать следующие вещи:

  • Социальное поведение: движение навстречу друзьям и в сторону от врагов.
  • Избегание источников света.
  • Добавить фары к некоторым роботам, так, чтобы они начали притягиваться друг к другу.

Лабиринты

"Ну, наконец-то! Я так и знала, что из этого лабиринта можно выбраться, действуя по алгоритму Тремо!" — Лиза Симпсон

Из всей массы алгоритмов выхода из лабиринтов, два выделяются тем, что используют объем памяти, не зависящий от размера самого лабиринта. Они известны под названиями “следование вдоль стены” (wall-following) и алгоритм Пледжа . Последний был назван в честь Джона Пледжа (Jon Pledge) из Эксетера, который изобрел алгоритм в возрасте 12 лет. Кроме этого есть еще великолепный алгоритм Тремо (Tremaux algorithm) – любимый алгоритм Лизы Симпсон – но в целях упрощения мы рассмотрим только первые два.

Алгоритмы генерации лабиринтов

Интерес представляют не только алгоритмы выхода из лабиринтов, но и их генерации. Лабиринты, рассматриваемые в данной статье, называются совершенными (perfect), благодаря тому, что существует один и только один вариант прохода между любыми двумя точками лабиринта. Благодаря этому условию исключаются петли, острова, а так же изолированные участки. Большинство алгоритмов, генерирующих совершенные лабиринты, работают следующим образом: они начинают с простого лабиринта, представляющего собой только внешнюю стену и постепенно добавляют внутренние участки. При этом на каждом шаге необходимо исключать возможность появления петель, изолированных секций и т.д.

Следование вдоль стены

Этот алгоритм настолько прост, что многие обучаются ему еще в детстве. Все что требуется для выхода — это вести левой рукой по левой стене (или правой рукой по правой стене) пока не встретите выход. Несложно видеть, что данный алгоритм работает безупречно для лабиринтов, в которых вход и выход расположены на периметре. К сожалению, алгоритм нельзя применять в случае, если выход расположен на острове — части лабиринта, не соединенной с остальными стенами. В этой ситуации алгоритм не найдет выход, потому что нельзя перепрыгнуть пустое пространство до острова, не отрывая руку от стены.

Алгоритм Пледжа

Алгоритм Пледжа более сложен, но зато способен находить выход из большего числа лабиринтов за счет возможности переходов от одного острова к другому. Идея алгоритма заключается в том, что надо выбрать некое абсолютное направление (север, юг, запад или восток) и всегда стараться ему следовать. Назовем его предпочтительным направлением . В случае если вы упираетесь в стену, вы поворачиваете направо и движетесь в соответствии с алгоритмом “следование вдоль стены” до тех пор, пока не выполнится два условия. Первое – это поворот в предпочтительном направлении, а второе – сумма всех ранее сделанных поворотов равна нуля (при этом каждый поворот против часовой стрелки принимается за единицу, а по часовой стрелке, соответственно, за минус единицу). После этого вы продолжаете двигаться в предпочтительном направлении пока это возможно и так далее. Условие на нулевую сумму поворотов необходимо для избегания разного рода ловушек, например, участков лабиринтов, имеющих форму G (нарисуйте ее на бумаге и сразу поймете, о чем я).

Алгернон: робот, выбирающийся из лабиринтов

Пришло время удивить ваших друзей, создав робота по имени Алгернон (Algernon), задачей которого будет выход из лабиринтов.

Проектирование робота

Для реализации как алгоритма Пледжа, так и следования вдоль стены необходимо точно определять момент, когда робот подходит к разветвлению в лабиринте, а также иметь возможность указать, какое направление выбрать.

Наверняка это можно реализовать множеством способов, но мы будем использовать специальный сенсор — эхолокатор, расположенный на левой стороне робота. Этот сенсор будет посылать сигналы при пересечении ответвлений слева по ходу движения. Для того чтобы определять, что впереди тупик, мы добавим еще один сенсор — датчик касания, расположенный в лобовой части робота.

Реализация алгоритма следования вдоль стены

Весь код Алгернона будет размещен в пакете algernon.subsumption (весь код доступен для ). Алгернон — это достаточно простой робот и его вполне можно запрограммировать в процедурном стиле. В то же время, даже для такого простого робота, подход, основанный на поглощении поведений, делает код намного чище, легче для понимания, а также способствует лучшей организации модулей.

Мы сделаем еще одно допущение в целях упрощения примера: будем считать, что все стены пересекаются под прямыми углами. Другими словами, все повороты налево и направо осуществляются исключительно на 90 градусов.

Леворукий алгоритм следования вдоль стены можно декомпозировать на четыре различных поведения:

  • Идти прямо.
  • Упершись в стену, повернуть направо.
  • Встретив ответвление влево, повернуть.
  • Остановиться при нахождении выхода.

Поведениям необходимо присвоить приоритеты. В данном примере, мы их выберем в том же порядке, в каком они перечислены выше. В итоге нам понадобятся четыре класса-наследника Behavior:

  • GoStraight
  • TurnRight
  • TurnLeft
  • ReachGoal

В листинге 7 показан код класса GoStraight , в котором TRANSLATIONAL_VELOCITY – это константа, равная 0.4:

Листинг 7. Реализация поведения для движения по прямой
public boolean isActive() { return true; } public Velocities act() { double rotationalVelocity = 0.0; return new Velocities(TRANSLATIONAL_VELOCITY, rotationalVelocity); }

Код класса TurnRight показан в листинге 8. Метод getRotationCount() возвращает количество временных интервалов, необходимых для поворота на 90 градусов при данной скорости вращения.

Листинг 8. Реализация поведения для поворота направоBehavior code for turning right
public boolean isActive() { if (turningRightCount > 0) { return true; } RangeSensorBelt bumpers = getSensors().getBumpers(); // Проверка переднего бампера. if (bumpers.hasHit(0)) { backingUpCount = 10; turningRightCount = getRotationCount(); return true; } else { return false; } } public Velocities act() { if (backingUpCount > 0) { // Робот уперся в стену. Надо чуть отойти назад перед поворотом backingUpCount--; return new Velocities(-TRANSLATIONAL_VELOCITY, 0.0); } else { turningRightCount--; return new Velocities(0.0, -Math.PI / 2); } }

Для поворота налево, Алгернон должен сначала чуть продвинуться вперед так, что стена слева от него закончится. Затем он поворачивается налево и проходит еще немного вперед так что, по его левую сторону опять находится стена. Код показан в листинге 9.

Листинг 9. Реализация поведения для поворота налево
public boolean isActive() { if (postGoingForwardCount > 0) { return true; } RangeSensorBelt sonars = getSensors().getSonars(); // Проверка эхолокатора слева if (sonars.getMeasurement(1) > 1.0) { // Слева коридор preGoingForwardCount = 20; postGoingForwardCount = 40; turnLeftCount = getRotationCount(); return true; } else { return false; } } public Velocities act() { if (preGoingForwardCount > 0) { preGoingForwardCount--; return new Velocities(TRANSLATIONAL_VELOCITY, 0.0); } else if (turnLeftCount > 0) { turnLeftCount--; return new Velocities(0.0, Math.PI / 2); } else { postGoingForwardCount--; return new Velocities(TRANSLATIONAL_VELOCITY, 0.0); } }

Код класса ReachGoal показан в листинге 10.

Листинг 10. Поведение при обнаружении выхода из лабиринта
public boolean isActive() { RangeSensorBelt sonars = getSensors().getSonars(); // Впереди открытое пространство? Другими словами, нашли ли мы выход из лабиринта? double clearDistance = 1.2; return sonars.getMeasurement(0) > clearDistance && sonars.getMeasurement(1) > clearDistance && sonars.getMeasurement(3) > clearDistance && sonars.getMeasurement(2) > clearDistance; } public Velocities act() { // Остановка return new Velocities(0.0, 0.0); }

Главный метод, определяющий поведение Алгернона приведен в листинге 11.

Листинг 11. Код управления поведениями Алгернона
private void initBehaviorBasedAgent(algernon.subsumption.BehaviorBasedAgent behaviorBasedAgent) { algernon.subsumption.Sensors sensors = behaviorBasedAgent.getSensors(); algernon.subsumption.Behavior behaviors = { new ReachGoal(sensors), new TurnLeft(sensors), new TurnRight(sensors), new GoStraightAlways(sensors) }; boolean subsumes = { { false, true, true, true }, { false, false, true, true }, { false, false, false, true }, { false, false, false, false } }; behaviorBasedAgent.initBehaviors(behaviors, subsumes); }

На рисунке 1 показано, как Алгернон движется по лабиринту.

Рисунок 1. Алгернон, двигающийся по лабиринту

Заметим, что робот успешно решает задачу выхода, несмотря на то, что ни один из его компонентов ничего не знает не только о лабиринтах, но даже о стенах. Не существует никакого центрального узла, выступающего в роли мозга, просчитывающего путь выхода. В этом и заключается суть архитектуры поглощения: сложное поведение, будто бы специально спроектированное для решения конкретной задачи, вырисовывается при взаимодействии простых, наслоенных друг на друга поведений.

Заключение

В данной статье рассматривалось создание простого программного робота. Программирование реального, физически существующего робота представляет собой значительно более сложную задачу, в основном из-за того, что приходится учитывать все аспекты влияния окружающего мира. Например, в рассмотренном примере было достаточно просто заставить робота двигаться прямо вдоль стены. В реальном мире с его неровными поверхностями, весьма непросто реализовать движение робота таким образом, чтобы он не ударялся об стену и одновременно не удалялся от нее слишком далеко. Так что, даже если вы любите программировать, не факт, что программирование роботов доставит вам удовольствие, т.к. зачастую это требует больше механической, чем творческой работы.

Обратите внимание на инструментарий LEGO Mindstorms, если вы заинтересовались проектированием и программированием роботов. В качестве альтернативы, можно поработать с роботами BEAM (Biological Electronic Aesthetics Mechanics). BEAM далее развивает идею поведенческой робототехники, вообще убирая программирование как таковое. Глобальное поведение робота определяется жестко заданными соединениями поведенческих узлов, работающих на рефлексах. Заплатив не более $30 вы сможете построить своего первого BEAM-робота. Также можно спроектировать робота по чертежам, которые вы найдете в книге Гарета Бранвина (Gareth Branwyn) “Создание роботов для абсолютных новичков” (см. ). Ну и, наконец, всегда можно купить Румбу и взломать его.

Один из поразительных выводов, к которому я пришел, начав заниматься программированием роботов, а также после поверхностного знакомства с кодом других разработчиков, - это то, что необязательно писать длинные программы, чтобы создать робота, обладающего весьма обширной функциональностью. При этом, правда, зачастую приходится долго шлифовать программу и экспериментировать с константами, чтобы робот делал именно то, что нужно. Используя же инструментарий LEGO Mindstorms, вы вполне сможете создать простого робота за вечер.

Робототехника – это своего рода захватывающая субкультура, включающая в себя книги, соревнования, видео и т.д. Вполне возможно, что даже недалеко от вас есть клуб или кружок любителей роботов.

Весь процесс состоит из двух этапов: сборки и программирования. Чтобы собрать хорошего робота, нужны знания в механике. Чтобы запрограммировать робота на определённые действия, нужно знать язык, который поймёт системная плата или программный блок. Школьными знаниями по информатике тут не обойтись.

Где взять материал?

Сначала нужно решить, как вы хотите собирать робота: из готовых наборов или самостоятельно подбирать материалы. Преимущество набора в том, что вам не нужно искать детали по отдельности. Чаще всего из одного набора можно собрать несколько устройств.

Конструкция, собранная не из готового набора, называется открытой системой. У неё тоже есть свои плюсы: ваш робот будет индивидуальностью, и вы сами сможете улучшать конструкцию. Но времени и сил потратите однозначно больше.

Из чего состоит робот?

Корпус – металлическое или пластмассовое «тело» , к которому прикрепляются остальные детали. У каждого робота есть источник энергии – батарейки или аккумулятор. В зависимости от того, какую задачу будет выполнять робот, выбирают датчики: они могут определять цвет и свет, реагировать на касание.

Чтобы заставить робота двигаться, понадобятся моторы. «Голова» всего механизма – системная плата или программный блок. С их помощью робот подключается к компьютеру и получает набор задач.

Как заставить его что‑то делать?

Чтобы робот выполнил какое‑то действие, нужно создать компьютерную программу. Сложность этого этапа зависит от сборки. Если робот собран из набора Lego Mindstorms или mBot, то с их программным обеспечением справятся даже дети.

Если вы собираете робота сами, вам нужно изучить основы программирования и язык, на котором собираетесь писать программу, например C++.

Почему робот может не выполнить программу?

Попадая в новое место, он может сбиться и выполнять программу неверно. Для того чтобы робот делал всё правильно, надо отрегулировать датчики. Например, слишком яркое освещение может помешать адекватно распознать цвета. В зависимости от поверхности, по которой передвигается робот, регулируют мощность моторов.

Можно научиться собирать и программировать в школе?

Несмотря на то что робототехника не входит в школьную программу, преподаватели по физике и информатике могут научить ребёнка собирать и программировать. В Белгороде в некоторых школах есть кружки, где делают роботов.

«После уроков с учителями физики и информатики мы учимся программировать. Уже умеем работать в LegoMindstorms и Robolab (программное обеспечение для роботов – прим. авт. ). Также иногда учимся делать 3D-чертежи деталей», – рассказали ученики Белгородского инженерного юношеского лицея-интерната и участники «РобоФеста-2018» Антон Першин и Дмитрий Чернов .

Где, кроме школы, можно стать робототехником?

В инжиниринговой школе БелГУ есть класс, в котором учат собирать и программировать роботов. В 2017 году в Белгороде открылся «Кванториум» , в котором робототехнике учат школьников с девяти лет.

Чтобы стать настоящим робототехником, можно поступить на робототехнический факультет. В Белгороде пока таких нет, но в БГТУ им. Шухова есть кафедра технической кибернетики . Её студенты занимают призовые места на всероссийских соревнованиях по робототехнике.

Можно ли научиться самому?

Да. Есть множество ресурсов в Интернете, на которых можно узнать, из чего собрать и как запрограммировать робота.

Будет ли робот полезным?

Его можно приспособить под бытовые задачи и сделать помощником в доме. В Интернете есть много примеров, как домашние изобретатели создают роботов для выпечки блинов или уборки квартиры.

Как подтвердить свои успехи в создании роботов?

Принять участие в таких соревнованиях, как «РобоФест». На них в зависимости от возраста и направления существуют разные номинации. В основном у каждого вида робота есть трасса, на которой он выполняет задания: захватить кубик или прочертить линию. Есть и статичные системы, в которых судьи оценивают презентацию проекта и работу механизмов.

Как правило, участники приезжают на соревнования с собранными роботами и при подготовке тратят время только на калибровку датчиков и корректировку программы.

Редакция благодарит за помощь в создании материала участников «РобоФеста-2018» Дмитрия Агафонова , Дмитрия Чернова , Антона Першина и Данила Мигрина .

Наталья Малыхина