Инициализация полей структуры в си. Структуры в си и их передача

Последнее обновление: 09.10.2017

Ранее для определения классов мы использовали ключевое слово class . Однако C++ предоставляет еще один способ для определения пользовательских типов, который заключается в использовании структур. Данный способ был унаследован языком С++ еще от языка Си.

Структура в языке C++ представляет собой производный тип данных, который представляет какую-то определенную сущность, также как и класс. Нередко структуры применителько к С++ также называют классами. И в реальности различия между ними не такие большие.

Для определения структуры применяется ключевое слово struct , а сам формат определения выглядит следующим образом:

Struct имя_структуры { компоненты_структуры };

Имя_структуры представляет произвольный идентификатор, к которому применяются те же правила, что и при наименовании переменных.

После имени структуры в фигурных скобках помещаются Компоненты_структуры , которые представляют набор описаний объектов и функций, которые составляют структуру.

Например, определим простейшую структуру:

#include #include struct person { int age; std::string name; }; int main() { person tom; tom.name = "Tom"; tom.age = 34; std::cout << "Name: " << tom.name << "\tAge: " << tom.age << std::endl; return 0; }

Здесь определена структура person , которая имеет два элемента: age (представляет тип int) и name (представляет тип string).

После определения структуры мы можем ее использовать. Для начала мы можем определить объект структуры - по сути обычную переменную, которая будет представлять выше созданный тип. Также после создания переменной структуры можно обращаться к ее элементам - получать их значения или, наоборот, присваивать им новые значения. Для обращения к элементам структуры используется операция "точка":

Имя_переменной_структуры.имя_элемента

По сути структура похожа на класс, то есть с помощью структур также можно определять сущности для использования в программе. В то же время все члены структуры, для которых не используется спецификатор доступа (public, private), по умолчанию являются открытыми (public). Тогда как в классе все его члены, для которых не указан спецификатор доступа, являются закрытыми (private).

Кроме того мы можем инициализировать структуру, присвоив ее переменным значения с помощью синтаксиса инициализации:

Person tom = { 34, "Tom" };

Инициализация структур аналогична инициализации массивов: в фигурных скобках передаются значения для элементов структуры по порядку. Так как в структуре person первым определено свойство, которое представляет тип int - число, то в фигурных скобках вначале идет число. И так далее для всех элементов структуры по порядку.

При этом любой класс мы можем представить в виде структуры и наоборот. Возьмем, к примеру, следующий класс:

Class Person { public: Person(std::string n, int a) { name = n; age = a; } void move() { std::cout << name << " is moving" << std::endl; } void setAge(int a) { if (a > 0 && a < 100) age = a; } std::string getName() { return name; } int getAge() { return age; } private: std::string name; int age; };

Данный класс определяет сущность человека и содержит ряд приватных и публичных переменных и функции. Вместо класса для определения той же сущности мы могли бы использовать структуру:

#include #include struct user { public: user(std::string n, int a) { name = n; age = a; } void move() { std::cout << name << " is moving" << std::endl; } void setAge(int a) { if (a > 0 && a < 100) age = a; } std::string getName() { return name; } int getAge() { return age; } private: std::string name; int age; }; int main() { user tom("Tom", 22); std::cout << "Name: " << tom.getName() << "\tAge: " << tom.getAge() << std::endl; tom.setAge(31); std::cout << "Name: " << tom.getName() << "\tAge: " << tom.getAge() << std::endl; return 0; }

И в плане конечного результата программы мы не увидели бы никакой разницы.

Когда использовать структуры? Как правило, структуры используются для описания таких данных, которые имеют только набор публичных атрибутов - открытых переменных. Например, как та же структура person, которая была определена в начале статьи. Иногда подобные сущности еще называют аггрегатными классами (aggregate classes).

Недавно познакомился со структурами C/C++ - struct. Господи, да «что же с ними знакомиться» скажете вы? Тем самым вы допустите сразу 2 ошибки: во-первых я не Господи, а во вторых я тоже думал что структуры - они и в Африке структуры. А вот как оказалось и - нет. Я расскажу о нескольких жизненно-важных подробностях, которые кого-нибудь из читателей избавят от часовой отладки…

Выравнивание полей в памяти

Обратите внимание на структуру:

Struct Foo { char ch; int value; };
Ну во-первых какой у этой структуры размер в памяти? sizeof(Foo) ?
Размер этой структуры в памяти зависит от настроек компилятора и от директив в вашем коде…

В общем выравниваются в памяти поля по границе кратной своему же размеру. То есть 1-байтовые поля не выравниваются, 2-байтовые - выравниваются на чётные позиции, 4-байтовые - на позиции кратные четырём и т.д. В большинстве случаев (или просто предположим что сегодня это так) выравнивание размера структуры в памяти составляет 4 байта. Таким образом, sizeof(Foo) == 8 . Где и как прилепятся лишние 3 байта? Если вы не знаете - ни за что не угадаете…

  • 1 байт: ch
  • 2 байт: пусто
  • 3 байт: пусто
  • 4 байт: пусто
  • 5 байт: value
  • 6 байт: value
  • 7 байт: value
  • 8 байт: value
Посмотрим теперь размещение в памяти следующей структуры:

Struct Foo { char ch; short id; int value; };
Оно выглядит вот так:

  • 1 байт: ch
  • 2 байт: пусто
  • 3 байт: id
  • 4 байт: id
  • 5 байт: value
  • 6 байт: value
  • 7 байт: value
  • 8 байт: value
То есть, то что можно впихнуть до выравнивания по 4 байта - впихивается на ура (без увеличения размера структуры в памяти), добавим ещё одно поле:

Struct Foo { char ch; short id; short opt; int value; };
Посмотрим на размещение полей в памяти:

  • 1 байт: ch
  • 2 байт: пусто
  • 3 байт: id
  • 4 байт: id
  • 5 байт: opt
  • 6 байт: opt
  • 7 байт: пусто
  • 8 байт: пусто
  • 9 байт: value
  • 10 байт: value
  • 11 байт: value
  • 12 байт: value
Всё это ой как печально, но есть способ бороться с этим прямо из кода:

#pragma pack(push, 1) struct Foo { // ... }; #pragma pack(pop)
Мы установили размер выравнивания в 1 байт, описали структуру и вернули предыдущую настройку. Возвращать предыдущую настройку - категорически рекомендую. Иначе всё может закончиться очень плачевно. У меня один раз такое было - падало Qt. Где-то заинклюдил их.h-ник ниже своего.h-ника…

Битовые поля

В комментариях мне указали на то, что битовые поля в структурах по стандарту являются «implementation defined» - потому их использования лучше избежать, но для меня соблазн слишком велик...

Мне становится не то что неспокойно на душе, а вообще становится хреново, когда я вижу в коде заполнение битовых полей при помощи масок и сдвигов, например так:

Unsigned field = 0x00530000; // ... field &= 0xFFFF00FF; field |= (id) << 8; // ... field &= 0xFFFFFF83; field |= (proto) << 2;
Всё это пахнет такой печалью и такими ошибками и их отладкой, что у меня сразу же начинается мигрень! И тут из-за кулис выходят они - Битовые Поля. Что самое удивительное - были они ещё в языке C, но кого ни спрашиваю - все в первый раз о них слышат. Этот беспредел надо исправлять. Теперь буду давать им всем ссылку, ну или хотя бы ссылку на эту статью.

Как вам такой кусок кода:

#pragma pack(push,1) struct IpHeader { uint8_t header_length:4; uint8_t version:4; uint8_t type_of_service; uint16_t total_length; uint16_t identificator; // Flags uint8_t _reserved:1; uint8_t dont_fragment:1; uint8_t more_fragments:1; uint8_t fragment_offset_part1:5; uint8_t fragment_offset_part2; uint8_t time_to_live; uint8_t protocol; uint16_t checksum; // ... }; #pragma pack(pop)
А дальше в коде мы можем работать с полями как и всегда работаем с полями в C/C++. Всю работу по сдвигам и т.д. берет на себя компилятор. Конечно же есть некоторые ограничения… Когда вы перечисляете несколько битовых полей подряд, относящихся к одному физическому полю (я имею ввиду тип который стоит слева от имени битового поля) - указывайте имена для всех битов до конца поля, иначе доступа к этим битам у вас не будет, иными словами кодом:

#pragma pack(push,1) stuct MyBitStruct { uint16_t a:4; uint16_t b:4; uint16_t c; }; #pragma pack(pop)
Получилась структура на 4 байта! Две половины первого байта - это поля a и b . Второй байт не доступен по имени и последние 2 байта доступны по имени c . Это очень опасный момент. После того как описали структуру с битовыми полями обязательно проверьте её sizeof !

Также порядок размещения битовых болей в байте зависит от порядка байтов. При порядке LITTLE_ENDIAN битовые поля раздаются начиная со первых байтов, при BIG_ENDIAN - наоборот…

Порядок байтов

Меня также печалят в коде вызовы функций htons() , ntohs() , htonl() , nthol() в коде на C++. На C это ещё допустимо, но не на С++. С этим я никогда не смирюсь! Внимание всё нижесказанное относится к C++!

Ну тут я буду краток. Я в одной из своих предыдущих статей уже писал что нужно делать с порядками байтов. Есть возможность описать структуры, которые внешне работают как числа, а внутри сами определяют порядок хранения в байтах. Таким образом наша структура IP-заголовка будет выглядеть так:

#pragma pack(push,1) struct IpHeader { uint8_t header_length:4; uint8_t version:4; uint8_t type_of_service; u16be total_length; u16be identificator; // Flags uint8_t _reserved:1; uint8_t dont_fragment:1; uint8_t more_fragments:1; uint8_t fragment_offset_part1:5; uint8_t fragment_offset_part2; uint8_t time_to_live; uint8_t protocol; u16be checksum; // ... }; #pragma pack(pop)
Внимание собственно обращать на типы 2-байтовых полей - u16be . Теперь поля структуры не нуждаются ни в каких преобразованиях порядка байт. Остаются проблемы с fragment_offset , ну а у кого их нет - проблем-то. Тем не менее тоже можно придумать шаблон, прячущий это безобразие, один раз его оттестировать и смело использовать во всём своём коде.

«Язык С++ достаточно сложен, чтобы позволить нам писать на нём просто» Как ни странно - Я

З.Ы. Планирую в одной из следующих статей выложить идеальные, с моей точки зрения, структуры для работы с заголовками протоколов стека TCP/IP. Отговорите - пока не поздно!

Пока мы рассматривали одну сложную структуру (сложный тип) - массив; одним из основных свойств массива является однотипность его компонент. Многие информационно-логические задачи связаны с обработкой документов, содержащих в себе информация разного типа (числовую, символьную и т. д.) Примеры таких документов: пла­тежные ведомости (фамилии и имена - символьная информация, де­нежные суммы - числовая), карточки больных в поликлинике, библио­течная информация. Для программирования алгоритмов обработки такой информации необходимо иметь сложный тип, объединяющий разнотипные компоненты. Таким типом является структура в Си (в Паскале запись).

Структурная переменная, или просто структура, состоит из не­скольких переменных (называемых полями), возможно, разного типа.

Структура

тип "структура" (шаблон)

переменная типа "структура "

Описание шаблона :

Описание структурной переменной

typedef struct { Тип1 Список1ИменПолей;

struct ИмяШаблона ИмяПеременной

Тип2 Список2ИменПолей;

ТипN СписокNИменПолей;

ключевое struct слово не нужно пpи

} ИмяШаблона

использовании typedef

или struct ИмяШаблона

{ Тип1 Список1ИменПолей;¦

Тип2 Список2ИменПолей;

ТипN СписокNИменПолей;

typedef struct {char author; char title;/*описание*/

int year; float price} BOOK; /*шаблона BOOK*/

/*или можно описать тот же самый шаблон так:

struct BOOK {char author; char title;

int year; float price} ;*/

struct BOOK b;/*описание структурной переменной b*/

Память, занимаемая структурой, равна сумме объемов памяти полей (если исключить из рассмотрения особенности, связанные с выравниванием). В любом случае для определения размера памяти структуры можно использовать операцию sizeof(). Шаблон ВООК, на­пример, описывает структуру размером памяти 70.

Обращение к полю структурной переменной:

ИмяСтруктуры.ИмяПоля или АдресСтруктуры ->ИмяПоля

. (точка) и ->являются операциями, соответственно, прямого и косвенного выбора компоненты структурированной переменной.

Например,

struct BOOK a,*pnta=&a;...

a.author="Byron"; pnta->author="Byron"; /*эквивалентные опера­торы*/

Пример. Задача примера 2 п.3.1.4 в нижеприведенной про­грамме выполнена с использованием структур (а не строк).

#include

#include

#include

{ /*структура сведений об игрушках*/

typedef struct {int nu;/*номер*/

char name;/*наименование*/

int minage,maxage;/*мин. и макс. возраст ребенка*/

double rub /*стоимость*/;}TOYS;

TOYS toy;/*переменная типа записьTOYS */

double max; /*максимальная стоимость*/

char namemax;/*название самого дорогого конструктора*/

int n /*число игрушек*/,i/*номер игрушки*/;

puts("Введите число наименований игpушек");

for (i=0; i

/*в цикле ввод сведений об игрушках и проверка условий*/

fflush(stdin); /*очистка буфера устройства ввода послеscanf */

printf(" Введите сведения об игpушке с номеpом %2d\n",toy.nu);

puts("наименование");

puts("мин. и макс. возpаст и стоимость");

scanf("%d%d%lf",&toy.minage,&toy.maxage,&toy.rub);

if ((strstr(toy.name,"констpуктоp")!=NULL ||

strstr(toy.name,"Констpуктоp")!=NULL) &&

(toy.maxage <= 7) &&

(toy.rub>max))

strcpy(namemax,toy.name);

puts(" Констpуктоpов для детей до семи лет нет");

{ printf("Cамый доpогой констpуктоp для детей до семи лет\n");

printf(" %s стоит %8.0f pублей\n",namemax,max);

В Си существует еще один сложный тип, описание которого формально похоже на структуру. Это тип (и переменная) объедине­ние .

Объединение - это переменная, содержащая поля разного типа, помещаемые в одно и то же место памяти. По существу объедине­ние дает способ различной интерпретация содержимого памяти. Описание шаблона (типа) объединения и переменной этого типа выполняется также, как для структуры, только вместо ключевого слова struct используетсяunion . Размер памяти, занимаемой объе­динением, равен максимальному из размеров полей.

Структуры

Как вам должно быть уже известно, классы относятся к ссылочным типам данных. Это означает, что объекты конкретного класса доступны по ссылке, в отличие от значений простых типов, доступных непосредственно. Но иногда прямой доступ к объектам как к значениям простых типов оказывается полезно иметь, например, ради повышения эффективности программы. Ведь каждый доступ к объектам (даже самым мелким) по ссылке связан с дополнительными издержками на расход вычислительных ресурсов и оперативной памяти.

Для разрешения подобных затруднений в C# предусмотрена структура , которая подобна классу, но относится к типу значения, а не к ссылочному типу данных. Т.е. структуры отличаются от классов тем, как они сохраняются в памяти и как к ним осуществляется доступ (классы - это ссылочные типы, размещаемые в куче, структуры - типы значений, размещаемые в стеке), а также некоторыми свойствами (например, структуры не поддерживают наследование). Из соображений производительности вы будете использовать структуры для небольших типов данных. Однако в отношении синтаксиса структуры очень похожи на классы.

Главное отличие состоит в том, что при их объявлении используется ключевое слово struct вместо class. Ниже приведена общая форма объявления структуры:

struct имя: интерфейсы { // объявления членов }

где имя обозначает конкретное имя структуры.

Как и у классов, у каждой структуры имеются свои члены: методы, поля, индексаторы, свойства, операторные методы и события. В структурах допускается также определять конструкторы, но не деструкторы. В то же время для структуры нельзя определить конструктор, используемый по умолчанию (т.е. конструктор без параметров). Дело в том, что конструктор, вызываемый по умолчанию, определяется для всех структур автоматически и не подлежит изменению. Такой конструктор инициализирует поля структуры значениями, задаваемыми по умолчанию. А поскольку структуры не поддерживают наследование, то их члены нельзя указывать как abstract, virtual или protected.

Объект структуры может быть создан с помощью оператора new таким же образом, как и объект класса, но в этом нет особой необходимости. Ведь когда используется оператор new, то вызывается конструктор, используемый по умолчанию. А когда этот оператор не используется, объект по-прежнему создается, хотя и не инициализируется. В этом случае инициализацию любых членов структуры придется выполнить вручную.

Давайте рассмотрим пример использования структур:

Using System; namespace ConsoleApplication1 { // Создадим структуру struct UserInfo { public string Name; public byte Age; public UserInfo(string Name, byte Age) { this.Name = Name; this.Age = Age; } public void WriteUserInfo() { Console.WriteLine("Имя: {0}, возраст: {1}",Name,Age); } } class Program { static void Main() { UserInfo user1 = new UserInfo("Alexandr", 26); Console.Write("user1: "); user1.WriteUserInfo(); UserInfo user2 = new UserInfo("Elena",22); Console.Write("user2: "); user2.WriteUserInfo(); // Показать главное отличие структур от классов user1 = user2; user2.Name = "Natalya"; user2.Age = 25; Console.Write("\nuser1: "); user1.WriteUserInfo(); Console.Write("user2: "); user2.WriteUserInfo(); Console.ReadLine(); } } }

Обратите внимание, когда одна структура присваивается другой, создается копия ее объекта. В этом заключается одно из главных отличий структуры от класса. Когда ссылка на один класс присваивается ссылке на другой класс, в итоге ссылка в левой части оператора присваивания указывает на тот же самый объект, что и ссылка в правой его части. А когда переменная одной структуры присваивается переменной другой структуры, создается копия объекта структуры из правой части оператора присваивания.

Поэтому, если бы в предыдущем примере использовался класс UserInfo вместо структуры, получился бы следующий результат:

Назначение структур

В связи с изложенным выше возникает резонный вопрос: зачем в C# включена структура, если она обладает более скромными возможностями, чем класс? Ответ на этот вопрос заключается в повышении эффективности и производительности программ. Структуры относятся к типам значений, и поэтому ими можно оперировать непосредственно, а не по ссылке. Следовательно, для работы со структурой вообще не требуется переменная ссылочного типа, а это означает в ряде случаев существенную экономию оперативной памяти.

Структура в Си - тип данных, предназначенный для размещения значения разного типа в одном объекте. Полезен, когда необходимо объединить несколько переменных с разными типами под одним именем. Делают программу более компактной, ею удобней управлять. Структура имеет схожие особенности с массивами и классами.

Массивы

Прежде чем говорить о структуре в Си, нужно описать массив.

Существуют массивы одномерные, двумерные, трехмерные. Одномерный - это такой, у которого есть только одна строка с заполненными значениями. Двумерный - одномерный массив, внутри которого находятся другие одномерные массивы.

Обычный массив в Си записывается так: int a = {1, 2, 3, 4}.

Видим, что a - имя, int - тип данных, внутри фигурных скобок { } находятся значения, между квадратными скобками указывается длина, то есть количество элементов. Количество элементов является статическим, равняется 4. Это означает, что если в этом примере пользователь добавит пятое значение, компилятор выдаст ошибку. Если изначально не известно количество, они могут быть добавлены позже, но в квадратных скобках не ставится значение.

Двумерный объявляется похожим образом. Например, массив, который содержит 5 элементов-массивов, при этом каждый содержит по 3 элемента объявляется так: int a.По аналогии с одномерным добавлять ничего нельзя, чтобы не получить ошибку компилирования.

Различают динамические и статические. Статический - это такой, который вмещает фиксированное количество данных, то есть имеет постоянную длину. Под динамическим понимается тот, размер которого не ограничивается, он может меняться во время выполнения программы. Инициализация динамического массива происходит без указания точного количества.

Классы

Класс и структура похожи по между собой, но отличаются некоторыми нюансами. Что это такое? Это абстракция, описывающая методы еще не существующего объекта. После создания объект или, как он называется по-другому, экземпляр класса имеет конкретные свойства. Методы могут использоваться внутри, снаружи или при наследовании.

Класс объявляется так:

class /*class name*/

/* спецификатор доступа private обозначает, что управление методами возможно только внутри класса*/

/* делает свойства доступными для других частей кода */

/* наследуемые классы получают возможность использовать эти свойства */

Что такое структура в языке Си

Предназначена для хранения несколько типов данных. Например, чтобы создать каталог журналов, нужно иметь список с такими параметрами:

  • дата издания;
  • номер выпуска;
  • название;
  • стоимость.

Для решения этой задачи можно было бы применить массивы.

Объявляем массив с датами int date, номерами int number, названиями char title, стоимостью int price.

Обращаясь по индексу, мы получаем требуемую информацию. Вывод информации о произведении под номером 3 выглядит так: cout << “дата выпуска: ” date “, номер: ” number “, название: ” title “, стоимость: “ price).

Структура упрощает запись, описывается следующим образом:

Видим одно из главных преимуществ - присутствуют разные типы переменных. Программист не просто экономит время - он упрощает код, в дальнейшем ему будет намного проще работать.

Объявление

Структуры в Си играют очень важную роль - объединение данных различного типа.

Для начала нужно указать имя структуры и свойства.

Struct - ключевое слово, оно начинает объявление, name - имя, type - тип данных, member - имя элемента.

Объявляется так:

name name2, где name - заданное при создании структуры имя, а name2 - имя переменной.

Объявить переменные можно на этапе создания.

Первый и второй пример равносильны друг другу.

Если есть необходимость объявить несколько переменных, они перечисляются через запятую.

} name2, name3, name4.

Инициализация

После объявления структуру в Си необходимо инициализировать.

name2.member=”a”;

Инициазация может происходить при создании.

char member = “a”;

У структуры такой же синтаксис, как у класса. У них практически одинаковое поведение, возможности. Все, что находится в теле класса, по умолчанию недоступно для использования другими объектами.

У структуры все наоборот - все поля и методы являются публичными. Вручную можно задать модификатор доступа private и таким образом открыть доступ другим функциям или классам.

Массивы - это множество компонентов одного типа. Они располагаются рядом с друг другом, обращение к каждому из них осуществляется по числовому индексу. Существуют одномерные массивы, двумерные, трехмерные.

У одномерного только одна строка и n-e количество элементов. Объявление выглядит так:

Массив структур в Си объявляется так:

В этом примере мы создали MyStruct с элементом целочисленного типа под именем "а". Объявляем переменную obj1 - она является массивом, состоит из 10 элементов.

При объявлении нескольких массивов одного типа используется MyStruct obj1, obj2, инициализация происходит во время объявления. Выглядит так:

Создание массива структур с динамическим выделением памяти выглядит точно также, как создание простого динамического массива. Для этого применяется указатель на структуру Си.

Указатель - это переменная, которая не содержит значения, а указывает на ту переменную, которая имеет какое-то значение. Соответственно, указатель содержит адрес этой переменной, на которую ссылается. Например, ptr = &var1 означает, что переменной со знаком амперсанда присвоен только адрес на переменную, но не само значение. Теперь все значения var1 доступны через переменную-указатель ptr.

Операция * отсылает к содержимому ячейки, на которую указывает переменная после этого символа. Например, *ptr говорит о том, что здесь содержатся значения, взятые из ячейки с адресом к ptr.

Чтобы выделить память для динамических переменных, используют операцию new.

У нас есть

Выделяем участок памяти, заносим туда некое значение MyStruct * point = new MyStruct;

Для удаления динамических переменных используем операцию delete. Чтобы освободить место, вводим delete p;

Доступ

Все элементы по умолчанию являются публичными, поэтому другие классы их могут использовать. Чтобы задать или изменить некоторые значения, сначала нужно обратиться к элементу и только потом произвести соответствующие действия.

Создаем myStruct с именем переменной b.

struct myStruct {

Обращаемся к fio:

и задаем произвольное значение. Например, b.fio = “Ivanov”.

Рассмотрим такой пример.

struct myStruct {

{ "Иванов", 456756 },

{ "Петров", 632345 }

В данном примере у нас есть массив структур со строками и числами. Чтобы вывести на экран фамилию Иванов, используем следующее:

cout << myStruct tel.fio;

Когда захотим получить значение 456756, выполняем cout << myStruct tel.num.

Структура и функции

Может использоваться, как аргумент функция в структуре в Си.

struct myStruct {

Имеем переменную value, строку text на 100 символов. Создаем переменную menu типа myStruct: myStruct menu. В следующем примере функция принимает указатель на структуру как аргумент, а в теле безымянной функции происходит инициализация этих переменных.

void item(myStruct menu)

sprintf(menu.text,"One item");

Заключение

Структура - это такой набор, наподобие массива, но при этом все элементы могут быть разного типа. Очень похожа на класс, но отличается тем, что свойства по умолчанию доступны для использования другими классами, то есть имеют спецификатор public.

Создается с помощью ключевого слова struct, а внутри фигурных скобок { } указываются свойства.

Объявление происходит на этапе создания или после.