Динамическое программирование оптимальное управление примеры. Там вверху ещё было написано про какую-то двумерную динамику? Прикладные задачи динамического программирования

Здравствуй, Хабрахабр. В настоящий момент я работаю над учебным пособием по олимпиадному программированию, один из параграфов которого посвящен динамическому программированию. Ниже приведена выдержка из данного параграфа. Пытаясь объяснить данную тему как можно проще, я постарался сложные моменты сопроводить иллюстрациями. Мне интересно ваше мнение о том, насколько понятным получился данный материал. Также буду рад советам, какие еще задачи стоит включить в данный раздел.

Во многих олимпиадных задачах по программированию решение с помощью рекурсии или полного перебора требует выполнения очень большого числа операций. Попытка решить такие задачи, например, полным перебором, приводит к превышению времени выполнения.

Однако среди переборных и некоторых других задач можно выделить класс задач, обладающих одним хорошим свойством: имея решения некоторых подзадач (например, для меньшего числа n ), можно практически без перебора найти решение исходной задачи.

Такие задачи решают методом динамического программирования, а под самим динамическим программированием понимают сведение задачи к подзадачам.

Последовательности

Классической задачей на последовательности является следующая.

Последовательность Фибоначчи F n задается формулами: F 1 = 1, F 2 = 1,
F n = F n - 1 + F n - 2 при n > 1. Необходимо найти F n по номеру n .

Один из способов решения, который может показаться логичным и эффективным, — решение с помощью рекурсии:

Int F(int n) { if (n < 2) return 1; else return F(n - 1) + F(n - 2); }
Используя такую функцию, мы будем решать задачу «с конца» — будем шаг за шагом уменьшать n , пока не дойдем до известных значений.

Но как можно заметить, такая, казалось бы, простая программа уже при n = 40 работает заметно долго. Это связано с тем, что одни и те же промежуточные данные вычисляются по несколько раз — число операций нарастает с той же скоростью, с какой растут числа Фибоначчи — экспоненциально.

Один из выходов из данной ситуации — сохранение уже найденных промежуточных результатов с целью их повторного использования:

Int F(int n) { if (A[n] != -1) return A[n]; if (n < 2) return 1; else { A[n] = F(n - 1) + F(n - 2); return A[n]; } }
Приведенное решение является корректным и эффективным. Но для данной задачи применимо и более простое решение:

F = 1; F = 1; for (i = 2; i < n; i++) F[i] = F + F;
Такое решение можно назвать решением «с начала» — мы первым делом заполняем известные значения, затем находим первое неизвестное значение (F 3), потом следующее и т.д., пока не дойдем до нужного.

Именно такое решение и является классическим для динамического программирования: мы сначала решили все подзадачи (нашли все F i для i < n ), затем, зная решения подзадач, нашли ответ (F n = F n - 1 + F n - 2 , F n - 1 и F n - 2 уже найдены).

Одномерное динамическое программирование

Чтобы лучше понять суть динамического программирования, сначала более формально определим понятия задачи и подзадачи.

Пусть исходная задача заключается в нахождении некоторого числа T при исходных данных n 1 , n 2 , ..., n k . То есть мы можем говорить о функции T (n 1 , n 2 , ..., n k ), значение которой и есть необходимый нам ответ. Тогда подзадачами будем считать задачи
T (i 1 , i 2 , ..., i k ) при i 1 < n 1 , i 2 < n 2 , ..., i k < n k .

Следующая задача одномерного динамического программирования встречается в различных вариациях.

При n < 32 полный перебор потребует нескольких секунд, а при n = 64 полный перебор не осуществим в принципе. Для решения задачи методом динамического программирования сведем исходную задачу к подзадачам.

При n = 1, n = 2 ответ очевиден. Допустим, что мы уже нашли K n - 1 , K n - 2 — число таких последовательностей длины n - 1 и n - 2.

Посмотрим, какой может быть последовательность длины n . Если последний ее символ равен 0, то первые n - 1 — любая правильная последовательность длины
n - 1 (не важно, заканчивается она нулем или единицей — следом идет 0). Таких последовательностей всего K n - 1 . Если последний символ равен 1, то предпоследний символ обязательно должен быть равен 0 (иначе будет две единицы подряд), а первые
n - 2 символа — любая правильная последовательность длины n - 2, число таких последовательностей равно K n - 2 .

Таким образом, K 1 = 2, K 2 = 3, K n = K n - 1 + K n - 2 при n > 2. То есть данная задача фактически сводится к нахождению чисел Фибоначчи.

Двумерное динамическое программирование

Классической задачей двумерного динамического программирования является задача о маршрутах на прямоугольном поле.
В разных формулировках необходимо посчитать число маршрутов или найти маршрут, который является лучшим в некотором смысле.

Приведем пару формулировок таких задач:

Задача 2. n *m клеток. Можно совершать шаги длиной в одну клетку вправо или вниз. Посчитать, сколькими способами можно попасть из левой верхней клетки в правую нижнюю.

Задача 3. Дано прямоугольное поле размером n *m клеток. Можно совершать шаги длиной в одну клетку вправо, вниз или по диагонали вправо-вниз. В каждой клетке записано некоторое натуральное число. Необходимо попасть из верхней левой клетки в правую нижнюю. Вес маршрута вычисляется как сумма чисел со всех посещенных клеток. Необходимо найти маршрут с минимальным весом.

Для всех таких задач характерным является то, что каждый отдельный маршрут не может пройти два или более раз по одной и той же клетке.

Рассмотрим более подробно задачу 2. В некоторую клетку с координатами (i ,j ) можно прийти только сверху или слева, то есть из клеток с координатами (i - 1, j ) и (i , j - 1):

Таким образом, для клетки (i , j ) число маршрутов A[i][j] будет равно
A[j] + A[i], то есть задача сводится к двум подзадачам. В данной реализации используется два параметра — i и j — поэтому применительно к данной задаче мы говорим о двумерном динамическом программировании.

Теперь мы можем пройти последовательно по строкам (или по столбцам) массива A, находя число маршрутов для текущей клетки по приведенной выше формуле. Предварительно в A необходимо поместить число 1.

В задаче 3 в клетку с координатами (i , j ) мы можем попасть из клеток с координатами
(i - 1, j), (i , j - 1) и (i - 1, j - 1). Допустим, что для каждой из этих трех клеток мы уже нашли маршрут минимального веса, а сами веса поместили в W[j], W[i],
W. Чтобы найти минимальный вес для (i , j ), необходимо выбрать минимальный из весов W[j], W[i], W и прибавить к нему число, записанное в текущей клетке:

W[i][j] = min(W[j], W[i], W) + A[i][j];

Данная задача осложнена тем, что необходимо найти не только минимальный вес, но и сам маршрут. Поэтому в другой массив мы дополнительно для каждой клетки будем записывать, с какой стороны в нее надо попасть.

На следующем рисунке приведен пример исходных данных и одного из шагов алгоритма.

В каждую из уже пройденных клеток ведет ровно одна стрелка. Эта стрелка показывает, с какой стороны необходимо прийти в эту клетку, чтобы получить минимальный вес, записанный в клетке.

После прохождения всего массива необходимо будет проследить сам маршрут из последней клетки, следуя по стрелкам в обратную сторону.

Задачи на подпоследовательности

Рассмотрим задачу о возрастающей подпоследовательности.

Задача 4. Дана последовательность целых чисел. Необходимо найти ее самую длинную строго возрастающую подпоследовательность.

Начнем решать задачу с начала — будем искать ответ, начиная с первых членов данной последовательности. Для каждого номера i будем искать наибольшую возрастающую подпоследовательность, оканчивающуюся элементом в позиции i . Пусть исходная последовательность хранится в массиве A. В массиве L будем записывать длины максимальных подпоследовательностей, оканчивающихся текущим элементом. Пусть мы нашли все L[i] для 1 <= i <= k - 1. Теперь можно найти L[k] следующим образом. Просматриваем все элементы A[i] для 1 <= i < k - 1. Если
A[i] < A[k], то k -ый элемент может стать продолжением подпоследовательности, окончившейся элементом A[i]. Длина полученной подпоследовательности будет на 1 больше L[i]. Чтобы найти L[k], необходимо перебрать все i от 1 до k - 1:
L[k] = max(L[i]) + 1, где максимум берется по всем i таким, что A[i] < A[k] и
1 <= i < k .

Здесь максимум из пустого множества будем считать равным 0. В этом случае текущий элемент станет единственным в выбранной последовательности, а не будет продолжением одной из предыдущих. После заполнения массива L длина наибольшей возрастающей подпоследовательности будет равна максимальному элементу L.

Чтобы восстановить саму подпоследовательность, можно для каждого элемента также сохранять номер предыдущего выбранного элемента, например, в массив N.

Рассмотрим решение этой задачи на примере последовательности 2, 8, 5, 9, 12, 6. Поскольку до 2 нет ни одного элемента, то максимальная подпоследовательность содержит только один элемент — L = 1, а перед ним нет ни одного — N = 0. Далее,
2 < 8, поэтому 8 может стать продолжением последовательности с предыдущим элементом. Тогда L = 2, N = 1.

Меньше A = 5 только элемент A = 2, поэтому 5 может стать продолжением только одной подпоследовательности — той, которая содержит 2. Тогда
L = L + 1 = 2, N = 1, так как 2 стоит в позиции с номером 1. Аналогично выполняем еще три шага алгоритма и получаем окончательный результат.

Теперь выбираем максимальный элемент в массиве L и по массиву N восстанавливаем саму подпоследовательность 2, 5, 9, 12.

Еще одной классической задачей динамического программирования является задача о палиндромах.

Задача 5. Дана строка из заглавных букв латинского алфавита. Необходимо найти длину наибольшего палиндрома, который можно получить вычеркиванием некоторых букв из данной строки.

Обозначим данную строку через S, а ее символы — через S[i], 1 <= i <= n . Будем рассматривать возможные подстроки данной строки с i -го по j -ый символ, обозначим их через S (i , j ). Длины максимальных палиндромов для подстрок будем записывать в квадратный массив L: L[i][j] — длина максимального палиндрома, который можно получить из подстроки S (i , j ).

Начнем решать задачу с самых простых подстрок. Для строки из одного символа (то есть подстроки вида S (i , i )) ответ очевиден — ничего вычеркивать не надо, такая строка будет палиндромом. Для строки из двух символов S (i , i + 1) возможны два варианта: если символы равны, то мы имеем палиндром, ничего вычеркивать не надо. Если же символы не равны, то вычеркиваем любой.

Пусть теперь нам дана подстрока S (i , j ). Если первый (S[i]) и последний (S[j]) символы подстроки не совпадают, то один из них точно нужно вычеркнуть. Тогда у нас останется подстрока S (i , j - 1) или S (i + 1, j ) — то есть мы сведем задачу к подзадаче: L[i][j] = max(L[i], L[j]). Если же первый и последний символы равны, то мы можем оставить оба, но необходимо знать решение задачи S (i + 1, j - 1):
L[i][j] = L + 2.

Рассмотрим решение на примере строки ABACCBA. Первым делом заполняем диагональ массива единицами, они будут соответствовать подстрокам S (i , i ) из одного символа. Затем начинаем рассматривать подстроки длины два. Во всех подстроках, кроме S (4, 5), символы различны, поэтому в соответствующие ячейки запишем 1, а в L — 2.

Получается, что мы будем заполнять массив по диагоналям, начиная с главной диагонали, ведущей из левого верхнего угла в правый нижний. Для подстрок длины 3 получаются следующие значения: в подстроке ABA первая и последняя буквы равны, поэтому
L = L + 2. В остальных подстроках первая и последняя буквы различны.

BAC: L = max(L, L) = 1.
ACC: L = max(L, L) = 2.
CCB: L = max(L, L) = 2.
CBA: L = max(L, L) = 1.

Если же в задаче необходимо вывести не длину, а сам палиндром, то дополнительно к массиву длин мы должны построить массив переходов — для каждой ячейки запомнить, какой из случаев был реализован (на рисунке для наглядности вместо числовых значений, кодирующих переходы, нарисованы соответствующие стрелки).

Раздел Динамическое программирование представлен следующими калькуляторами:

  1. Задача распределения инвестиций . Для реконструкции и модернизации производства на четырех предприятиях выделены денежные средства С = 80 ден. ед. По каждому предприятию известен возможный прирост f i (х) (i = 1, 4) выпуска продукции в зависимости от выделенной суммы.

В задачах динамического программирования экономический процесс зависит от времени (или от нескольких периодов времени), поэтому находится ряд оптимальных решений (последовательно для каждого этапа), обеспечивающих оптимальное развитие всего процесса в целом. Динамическое программирование представляет собой математический аппарат, позволяющий осуществлять оптимальное планирование управляемых процессов и процессов, зависящих от времени. Поэтапное проведение оптимизации называется многошаговым процессом принятия решения. Экономический процесс называется управляемым, если можно влиять на ход его развития.

В основе метода динамического программирования (ДП) лежит принцип последовательной оптимизации: решение исходной задачи оптимизации большой размерности заменяется решением последовательности задач оптимизации малой размерности. Основным условием применимости метода ДП является возможность разбиения процесса принятия решений на ряд однотипных шагов или этапов, каждый из которых планируется отдельно, но с учетом результатов, полученных на других шагах. Например, деятельность отрасли промышленности в течение ряда хозяйственных лет или же последовательность тестов, применяемых при контроле аппаратуры, и т. д. Некоторые процессы (операции) расчленяются на шаги естественно, но существуют такие операции, которые приходится делить на этапы искусственно, например процесс наведения ракеты на цель.
Этот принцип гарантирует, что управление, выбранное на любом шаге, является не локально лучшим, а лучшим с точки зрения процесса в целом, так как это управление выбирается с учетом последствий на предстоящих шагах.

Рассмотрим общее описание задачи динамического программирования .
Пусть многошаговый процесс принятия решений разбивается на n шагов. Обозначим через ε 0 – начальное состояние системы, через ε 1 , ε 2 , … ε n – состояния системы после первого, второго, n -го шага. В общем случае состояние ε k – вектор (ε k 1 , …, ε k s ).
Управлением в многошаговом процессе называется совокупность решений (управляющих переменных) u k = (u k 1 , ..., u k r ), принимаемых на каждом шаге k и переводящих систему из состояния ε k -1 = (ε k- 1 1 , …, ε k -1 s ) в состояние ε k = (ε k 1 , …, ε k s ).
В экономических процессах управление заключается в распределении и перераспределении средств на каждом этапе. Например, выпуск продукции любым предприятием – управляемый процесс, так как он определяется изменением состава оборудования, объемом поставок сырья, величиной финансирования и т. д. Совокупность решений, принимаемых в начале года, планируемого периода, по обеспечению предприятия сырьем, замене оборудования, размерам финансирования и т. д. является управлением. Казалось бы, для получения максимального объема выпускаемой продукции проще всего вложить максимально возможное количество средств и использовать на полную мощность оборудование. Но это привело бы к быстрому изнашиванию оборудования и, как следствие, к уменьшению выпуска продукции. Следовательно, выпуск продукции надо спланировать так, чтобы избежать нежелательных эффектов. Необходимо предусмотреть мероприятия, обеспечивающие пополнение оборудования по мере изнашивания, т. е. по периодам времени. Последнее хотя и приводит к уменьшению первоначального объема выпускаемой продукции, но обеспечивает в дальнейшем возможность расширения производства. Таким образом, экономический процесс выпуска продукции можно считать состоящим из нескольких этапов (шагов), на каждом из которых осуществляется влияние на его развитие.
Началом этапа (шага) управляемого процесса считается момент принятия решения (о величине капитальных вложений, о замене оборудования определенного вида и т. д.). Под этапом обычно понимают хозяйственный год.
Обычно на управление на каждом шаге u k накладываются некоторые ограничения. Управления, удовлетворяющие этим ограничениям, называются допустимыми.
Предполагая, что показатель эффективности k -го шага процесса зависит от начального состояния на этом шаге k -1 и от управления на этом шаге u k , получим целевую функцию всего многошагового процесса в виде:
.

Сформулируем теперь задачу динамического программирования : «Определить совокупность допустимых управлений (u 1 , …, u n ), переводящих систему из начального состояния ε 0 в конечное состояние ε n и максимизирующих или минимизирующих показатель эффективности F ».
Управление, при котором достигается максимум (минимум) функции F называется оптимальным управлением u * = (u 1* ,…, u n *).
Если переменные управления u k принимают дискретные значения, то модель ДП называется дискретной . Если переменные u k изменяются непрерывно, то модель ДП называется непрерывной .
В зависимости от числа параметров состояния s и числа управляющих переменных r различают одномерные и многомерные задачи ДП.
Число шагов в задаче может быть конечным или бесконечным .

Прикладные задачи динамического программирования

  1. задача о планировании строительства объектов.

Динамическое программирование.

При моделировании сетевых структур помимо задач, связанных с существованием потоков в транспортных, электрических, телефонных, компьютерных и прочих видах сетей, возникает целый класс задач, сводимых к задаче о кратчайшем пути. Например, задача о кратчайшем пути всякий раз решается программой - маршрутизатором при нахождении сайта по его имени в сети Интернет.

Задача о кратчайшем пути в ориентированной сети является типичной задачей динамического программирования, поэтому, хотя динамическое программирование, также как и сетевое планирование, связано с развитием процессов во времени, моделирование которых более детально рассмотрено в следующем разделе, рассмотрим уже в этом параграфе метод динамического программирования на примере поиска кратчайшего пути.

Понятие динамического программирования тесно связано с многошаговыми процессами принятия решений. Многошаговый процесс принятия решений можно определить, как процесс принятия последовательных решений, направлен­ных на достижение заданной цели. Многошаговые процессы принятия решений постоянно встречаются в самых различных ситуациях, от ремонта автомобиля в автосервисе до управления космическим аппаратом.

Динамическое программи­рование можно приблизительно определить, как набор математи­ческих процедур, используемых при анализе многошаговых про­цессов принятия решений. Каждый многошаговый процесс принятия решений представля­ет собой развитие следующей задачи: найти кратчайший путь в направленной, ациклической сети.

Динамическое программирование можно рассматривать как единую теорию благодаря единому набору идей и приемов, которые используются при математическом анализе различных задач. Эти идеи и приемы и составляют сущность динамического программи­рования. Беллман одним из первых понял суть принципа оптимальности и стал применять его ко многим оптимизационным задачам, возникающих в математике, технике, исследовании операций и в других областях.

Таким образом, понятие динамического программирования связано с многошаговым процессом принятия решений для достижения определенной цели. Например, перевод летательного аппарата с одной орбиты на другую представляет собой типичную задачу динамического программирования, при условии, если коррекция орбиты осуществляется приложением импульса в дискретные моменты времени, а целью является экономия топлива.

Характеризуя динамическое программирование, как набор математических процедур для оптимального управления дискретной системой, в общем виде задачу оптимального управления можно сформулировать следующим образом. В дискретные моменты времени t = 1, 2,..., N система находится в одном из множеств s i состояний, характеризуемых вектором состояния x (t) . Переход между последовательными состояниями осуществляется с помощью вектора управления u (t) по закону:

x ( t ) = g ( t ) (x ( t ) , u ( t )) ; t = 1, 2,..., N

Управления u (t) выбираются из множества допустимых управлений и образуют последовательность допустимых управлений u (0) ,u (1) ,…,u (N) . Последовательность допустимых управлений при заданном начальном состоянии х (0) определяет траекторию системы х (0) ,х (1) ,х (2) ,…,х (N) .

Всякой траектории соответствует свое значение критерия оптимальности F , или целевой функции управления, слагающегося из отдельных вкладов на каждом этапе управления:

Задачa оптимального управления заключается в нахождении среди множества последовательностей управления такой, которая достигает минимального значения F. Такая последовательность называется оптимальной последовательностью управлений и определяет оптимальную траекторию.

В основе динамического программирования лежит принцип оптимальности Беллмана, который можно сформулировать так. Оптимальная стратегия обладает таким свойством, что каково бы ни было начальное состояние и решение в начальный момент, последующие решения должны формулировать оптимальную стратегию относительно состояния, возникающего после начального решения.

Смысл принципа оптимальности становится ясней, если учесть, что для оптимальной траектории каждый ее участок между конечной точкой и любой промежуточной также является оптимальной траекторией. Принцип оптимальности, или иначе метод динамического программирования, позволяет отыскать оптимальную многошаговую стратегию путем решения совокупности более простых одношаговых оптимизационных задач.

Метод динамического программирования хорошо иллюстрируется на примере поиска кратчайшего пути между крайними узлами ориентированной сети. Рассмотрим некоторую ориентированную сеть, насчитывающую 12 узлов, которую нужно пройти от начального узла (1) до конечного узла (12) за четыре шага, передвигаясь с каждым шагом от узла к узлу.

Рис. 6.4.1. Прохождение ориентированной сети по кратчайшему пути.

Числа, указанные при дугах (i,j ) равны длинам дуг l ij между узлами i и j (в условных единицах). Возможные состояния системы s i в данном случае связаны с нахождением в i -м узле, управление u (t) связано с выбором направления пути на каждом шаге управления. Четыре шага управления u (1) ,...,u (4) последовательно переводят систему из начального состояния s 1 в конечное состояние s 12 и, таким образом, образуют некоторую траекторию, которую необходимо отыскать. В роли критериея оптимальности F в данном случае выступает длина траектории L , слагающаяся из длин отдельных дуг:

Если поиски кратчайшего пути, т. е. оптимальной траектории, начинать не с начала, а сконца сети и двигаться в обратном направлении к началу, то в этом случае мы имеем алгоритм «обратной прогонки». В данном случае при реализации алгоритма обратной прогонки движение осуществляется от конечного состояния s 12 к начальному состоянию s 1 .

Вначале поиска кратчайшего пути составляется таблица переходов. Число строк таблицы равно числу шагов управления, число столбцов равно числу состояний минус один. В этой таблице будут храниться шаги управления и соответствующие им значения критерия оптимальности L t для всех возможных состояний системы после каждого шага.

Таблица 6.4.1

i t s 1 s 2 s 3 s 4 s 5 S 6 s 7 s 8 s 9 s 10 s 11
12 12 6
10 11 10
5
1


Заполненные клетки таблицы разбиты пополам. В верхнюю часть заполненной клетки заносится управление u (t) , т. е. в данном случае номер узла, в который осуществляется переход. В нижнюю часть заполненной клетки заносится то значение вклада L t в общее значение критерия оптимальности L , которое было получено при переходеиз соответствующего этой клетке узла в конечный узел.

Заполнение таблицы начинается с первой строки, где хранится информация о последнем шаге пути. Последний, в данном случае четвертый шаг пути определен однозначно при переходе из любого предпоследнего состояния, которым может быть любое из трех возможных: s 9 , s 10 , s 11 . Поэтому оптимальное управление на последнем шаге очевидно. В зависимости от предпоследнего состояния вклад в критерий оптимальности L 4 (9) = 12, L 4 (10) = 6, либо L 4 (11) = 7. Эти значения вклада в L записываются в нижней части клеток первой строки табл. 6.4.1.

Перед предпоследним – в данном случае третьим - шагом множество возможных состояний системы есть {s 5 , s 6 , s 7 , s 8 }. Применим теперь принцип Беллмана для определения траектории на третьем и четвертом шаге. Он заключается в том, что независимо от первых двух шагов управления отрезок траектории на последних двух шагах сам по себе является оптимальной траекторией, т.е. дает минимум вклада L 3 в критерий оптимальности.

Если состояние системы перед предпоследним шагом есть состояние s 8 , то на последних шагах вклад в L определяется соотношением

L 3 (s 5)=min{ }.

Поскольку из s 5 возможны переходы в s 9 и s 11 .т.е.:

g(s 5 ,9) = s 9 ; ; L 4 (s 9) = 12,

g(s 5 ,11) = s 11 ; ; L 4 (s 11) = 7,

L 3 (s 5) = min{6+12, 4+7} = 11 и u (3) = 11.

Это означает, что если система находится в состоянии s 5 , то оптимальное управление заключается сначала в переходе в состояние s 11 , затем в состояние s 12 . Длина дуги из s 5 в s 12 при этом оказывается равна 11 единиц.

Рассчитывая вклад в L аналогично для переходов из состояний s 6 , s 7 , s 8 , получим следующие вклады:

L 3 (s 6)=min{7+12, 6+6)=12 , u (3) =10;

L 3 (s 7)=min{5+6, 3+7)=10, u (3) =11;

L 3 (s 8)=min{10+6, 12+7)=16, u (3) =10;

Полученные четыре пары чисел записываются во вторую строку Табл. 6.4.1.

На втором шаге управления вклад в критерий оптимальности в зависимости от исходного состояния есть

L 2 (s 2) = min{ } = min{11+11, 14+10} = 22, u (2) = 5;

L 2 (s 3) = min{ } = min{7+11, 9+12} = 18, u (2) = 5;

L 2 (s 4) = min{ } = min{2+16, 3+12, 6+10} = 15, u (2) = 6;

Полученные три пары чисел записываются в третью строку Табл.6.4.1.

Начальное состояние s 1 определено однозначно, поэтому в последней строке таблицы заполняется единственная клетка, куда носятся значения 3 и 24 поскольку:

L 1 (s 1) = min{ } = min{5+22, 6+18, 11+15} = 24, u (1) = 3.

Теперь можно окончательно определить последовательность оптимального многошагового управления. На первом шаге u (1) = 3, т.е. из узла 1 переходим в узел 3, на втором шаге u (2) = 5, т.е. переходим в узел 5, далее после управления u (3) = 11 - в узел 11 и, наконец, в узел 12. Окончательно получаем, что кратчайший путь по сети, изображенной на Рис. 6.4.1, проходит по последовательности состояний s 1 →s 2 →s 5 →s 11 →s 12 , а его протяженность составляет 24 условных единиц.

Поиск кратчайшего пути можно также осуществлять из начала сети, реализуя при этом алгоритм прямой прогонки, который выполняет в сущности те же операции сложения и сравнения, но в несколько иной последователь­ности.

В алгоритмах прямой и обратной прогонки, хотя и отличных по существу, предусматривается одно сложение и одно сравнение на каждую дугу. Следовательно, оба алгоритма обладают одина­ковым быстродействием. Тем не менее, существует важное различие. В алгоритме прямой прогонки рассматри­ваются дуги, исходящие из тех узлов, кратчайшие пути l i до которых уже известны.

В алгоритме обратной прогонки рассматриваются дуги, входящие в те узлы, кратчайшие пути l j до которых ещё неизвестны. В силу последнего обстоятельства предпочтение чаще отдаётся алгоритму прямой прогонки. Этот алгоритм можно применять при любой структуре множества кратчайших путей.

Решение простой задачи о кратчайшем пути иллюстрирует ряд следующих характерных особенностей, которые присущи значительно более сложным мно­гошаговым процессам принятия решений:

1. Исходная задача погружается во множество оптимизационных задач; при этом для каждого узла решается своя задача.

2. Множество решений оптимизационных задач описывается функциональным уравнением, представляющим собой систему уравнений, которые связывают несколько оптимизационных задач. В такой системе каждое уравнение соответствует одному узлу и содержит обычно операторы типа min, mах или minimax справа от знака равенства, а переменные типа g i , и g j - по обе стороны от него.

3. Решение множества оптимизационных задач можно найти с по­мощью алгоритма обратной прогонки, который равнозначен упорядоченной процедуре решения последова­тельности функциональных уравнений.

Динамическое программирование хорошо подходит для решения проблем, связанных с моделированием сетевых систем, не обладающих специальной структурой. Так, алгоритмы прямой и обратной прогонки пригодны для проведения вычислений в ациклических сетях. Алгоритм обратной прогонки можно обобщить и исполь­зовать для решения задач, в которых есть элемент случайности. Для алгоритма прямой прогонки это нельзя сделать.

Понятие «состояние» играет центральную роль в динамическом программировании, при этом под состояниями пони­мается следующее. Переход осуществляется из состояния в состояние, заключающее в себе всю предысторию процесса, т. е. состояние описано с той степенью подробности, которая позволяет провести вычисление (оценку) текущих альтернативных решении.

Для сетевой модели состояниями являются узлы, а дуги, выходящие из некоторого узла, отображают различные решения, которые можно принимать в данном узле (состоянии). При таком толковании можно говорить, что переход происходит из состояния в состояние, а состояния представляют собой точки, в которых принимаются решения. Приведенное утверждение означает, что дуги, выходя­щие из узла, не имеют никакого отношения к тому, каким путём был достигнут тот или иной узел, т. е. не зависят от входящих дуг.

Элементы состояния часто называют переменными состояния. В моделях динамического программирования состоя­ния иногда группируются в стадии, и переход осуществляется от одной стадии к другой. Например, в задаче о кратчайшем пути имеются состояния, но нет стадий, так как нельзя сгруп­пировать состояния в множества таким образом, чтобы происходил переход от одного множества к другому.

Погружение во множество оптимизационных задач равно­сильно введению понятия пространство состояний, которое пред­ставляет собой множество состояний. В функциональном уравне­нии оптимальный отклик рассматривается как функция стартового состояния, а принцип оптимальности устанавливает взаимосвязь между оптимальными откликами для различных стартовых состояний.

Множество S возможных (или наблюдаемых) состояний назы­вается пространством состояний, а элемент s из S определяет конкретное состояние. С каждым состоянием s связано множество D (s ) . Элемент d из множества D (s ) называется решением. Правило, согласно которому определяется допустимое решение для каждого состояния, называется стратегией d.

Фактически страте­гия d ставит в соответствие каждому состоянию s некоторый эле­мент d(s ) из множества D (s ). Набор всех таких d образует про­странство стратегий D. Последнее означает, что выбор решения в некотором состоянии не ограничивает выбор во всех других состояниях. По существу, D представляет собой декартово произведение множеств D (s ) по s .

Одна из идей динамического программирования состоит в том, каждой стратегии d должна соответствовать так называемая функция прибы­ли V d (s ), которую можно получить, исходя из состояния s и используя стратегию d. Понятие функции прибы­ли (или дохода) обобщает понятие вклада L t в общее значение критерия оптимальности L, рассматриваемое при решении задачи о кратчайшем пути.

Выражение «используя стратегию d» означает, что в состоянии s выбирается решение d(s ); затем предполагается, что процесс перешел в состояние s " , т. е. реализуется состояние s ", в котором выбирается решение d(s "), и т. д. Функция прибыли имеет доволь­но сложную структуру, поскольку она зависит от последователь­ности состояний и решений, от вознаграждений, которые связаны с этими состояниями и решениями, а также от способа агрегиро­вания вознаграждений.

Состояние представляет собой описание предыстории процесса со степенью подробности, позволяющей провести оценку текущих альтернативных решений. Основным свойством состояний является то, что состояние является краткой записью предыстории процесса, причем степень детализации позволяет определить локальную функцию дохода.Иными словами, локальная функция дохода может зависеть лишь от s , d и v.

В следующей главе будут более подробно рассмотрены цепи Маркова, имеющие большое значение для моделирования временной эволюции производственных и технических систем. Существуют также Марковские модели принятия решений, в которых состояние s определяется некоторой парой чисел (n,i ) , решением является зависящая от них функция k , а локальная функция дохода определяется выражением типа h [(n , I ) , k, v ] = R k i (n ) + å j P k ij (n )v (n+ 1,j ) (n).

Марковские модели при­нятия решений обобщаются в разных направлениях, в частности, на случай Марковских задач о восстановлении . Наиболее полезное обобщение получается, когда рас­сматриваются неравные или переменные времена переходов. В простых моделях предполагается, что переход из состояния в состояние и наблюдение состояния осуществляются мгновенно, а отрезок времени между переходами из состояния в состояние может иметь переменную или случайную длину.

Всякий раз, когда наблюдается некоторое состояние, выбирается реше­ние, которое уже нельзя изменять до тех пор, пока процесс не перейдет в новое состояние, где выбирается новое решение, и т. д. Данная модель представляет собой комбинацию теории цепей Маркова и теории восстановления; обычно ее называют Мар­ковской задачей о восстановлении.

Контрольные вопросы к главе 6.

1. Из каких компонентов состоит ориентированная сеть?

1. Как строится матрица пропускных способностей сети?

1. Как образуется матрица потока в сети?

1. Для чего вычитаются матрицы пропускных способностей и потоков?

1. Что такое и для чего служит сетевой график?

1. Как определяются времена раннего начала и раннего окончания работ?

1. Что представляет собой общий резерв времени для некоторого события на сетевом графике?

1. Как определяется критический путь?

1. Что называется вектором состояния некоторой системы?

1. Что представляет собой траектория системы в пространстве состояний?

1. В чем заключается задача оптимального управления?

1. Как формулируется критерий оптимальности?

1. Что представляет собой динамическое программирование?

1. Сформулируйте принцип оптимальности Беллмана.

1. В чем сущность алгоритмов прямой и обратной прогонки при поиске кратчайшего пути?

Варианты заданий к главе 6.

Для сетей в каждом из вариантов:

1) Найти максимальный поток из источника (1) в конечный узел сети – сток, полагая, что одно из чисел в скобках у каждой дуги (i, j) определяет пропускную способность дуги;

1) Полагая, что дуги (1)®(2), (1)®(3) и т. д. определяют некоторые работы, минимальная и максимальная продолжительность которых заданы числами, указанными при соответствующих дугах, найти критический путь от начального события (1) до конечного;

1) Произвести поиск кратчайшего пути от начального узла до конечного узла сети. Считать расстояния между узлами i, j заданными одним из чисел в скобках.





X 4

Динамическое программирование - тема, которой в рунете посвящено довольно мало статей, поэтому мы решили ею заняться. В этой статье будут разобраны классические задачи на последовательности, одномерную и двумерную динамику, будет дано обоснование решениям и описаны разные подходы к их реализации. Весь приведённый в статье код написан на Java.

О чём вообще речь? Что такое динамическое программирование?

Метод решения задачи путём её разбиения на несколько одинаковых подзадач, рекуррентно связанных между собой. Самым простым примером будут числа Фибоначчи - чтобы вычислить некоторое число в этой последовательности, нам нужно сперва вычислить третье число, сложив первые два, затем четвёртое таким же образом на основе второго и третьего, и так далее (да, мы слышали про замкнутую формулу).

Хорошо, как это использовать?

Решение задачи динамическим программированием должно содержать следующее:

И что, мне для решения рекурсивный метод писать надо? Я слышал, они медленные.

Конечно, не надо, есть и другие подходы к реализации динамики. Разберём их на примере следующей задачи:

Вычислить n-й член последовательности, заданной формулами:
a 2n = a n ­+ a n-1 ,
a 2n+1 = a n — a n-1 ,
a 0 = a 1 = 1.

Идея решения

Здесь нам даны и начальные состояния (a 0 = a 1 = 1), и зависимости. Единственная сложность, которая может возникнуть - понимание того, что 2n - условие чётности числа, а 2n+1 - нечётности. Иными словами, нам нужно проверять, чётно ли число, и считать его в зависимости от этого по разным формулам.

Рекурсивное решение

Очевидная реализация состоит в написании следующего метода:

Private static int f(int n){ if(n==0 || n==1) return 1; // Проверка на начальное значение if(n%2==0){ //Проверка на чётность return f(n/2)+f(n/2-1); // Вычисляем по формуле для чётных индексов, // ссылаясь на предыдущие значения }else{ return f((n-1)/2)-f((n-1)/2-1); // Вычисляем по формуле для нечётных //индексов, ссылаясь на предыдущие значения } }

И она отлично работает, но есть нюансы. Если мы захотим вычислить f(12) , то метод будет вычислять сумму f(6)+f(5) . В то же время, f(6)=f(3)+f(2) и f(5)=f(2)-f(1) , т.е. значение f(2) мы будем вычислять дважды. Спасение от этого есть - мемоизация (кеширование значений).

Рекурсивное решение с кэшированием значений

Идея мемоизации очень проста - единожды вычисляя значение, мы заносим его в какую-то структуру данных. Перед каждым вычислением мы проверяем, есть ли вычисляемое значение в этой структуре, и если есть, используем его. В качестве структуры данных можно использовать массив, заполненный флаговыми значениями. Если значение элемента по индексу N равно значению флага, значит, мы его ещё не вычисляли. Это создаёт определённые трудности, т.к. значение флага не должно принадлежать множеству значений функции, которое не всегда очевидно. Лично я предпочитаю использовать хэш-таблицу - все действия в ней выполняются за O(1) , что очень удобно. Однако, при большом количестве значений два числа могут иметь одинаковый хэш, что, естественно, порождает проблемы. В таком случае стоит использовать, например, красно-чёрное дерево .

Для уже написанной функции f(int) кэширование значений будет выглядеть следующим образом:

Private static HashMap cache = new HashMap(); private static int fcashe(int n){ if(!cache.containsKey(n)){//Проверяем, находили ли мы данное значение cache.put(n, f(n)); //Если нет, то находим и записываем в таблицу } return cache.get(n); }

Не слишком сложно, согласитесь? Зато это избавляет от огромного числа операций. Платите вы за это лишним расходом памяти.

Последовательное вычисление

Теперь вернёмся к тому, с чего начали - рекурсия работает медленно. Не слишком медленно, чтобы это приносило действительные неприятности в настоящей жизни, но на соревнованиях по спортивному программированию каждая миллисекунда на счету.

Метод последовательного вычисления подходит, только если функция ссылается исключительно на элементы перед ней - это его основной, но не единственный минус. Наша задача этому условию удовлетворяет.

Суть метода в следующем: мы создаём массив на N элементов и последовательно заполняем его значениями. Вы, наверное, уже догадались, что таким образом мы можем вычислять в том числе те значения, которые для ответа не нужны. В значительной части задач на динамику этот факт можно опустить, так как для ответа часто бывают нужны как раз все значения. Например, при поиске наименьшего пути мы не можем не вычислять путь до какой-то точки, нам нужно пересмотреть все варианты. Но в нашей задаче нам нужно вычислять приблизительно log 2 (N) значений (на практике больше), для 922337203685477580-го элемента (MaxLong/10) нам потребуется 172 вычисления.

Private static int f(int n){ if(n<2) return 1; //Может, нам и вычислять ничего не нужно? int fs = int[n]; //Создаём массив для значений fs=fs=1; //Задаём начальные состояния for(int i=2; i

Ещё одним минусом такого подхода является сравнительно большой расход памяти.

Создание стека индексов

Сейчас нам предстоит, по сути, написать свою собственную рекурсию. Идея состоит в следующем - сначала мы проходим «вниз» от N до начальных состояний, запоминая аргументы, функцию от которых нам нужно будет вычислять. Затем возвращаемся «вверх», последовательно вычисляя значения от этих аргументов, в том порядке, который мы записали.

Зависимости вычисляются следующим образом:

LinkedList stack = new LinkedList(); stack.add(n); { LinkedList queue = new LinkedList(); //Храним индексы, для которых ещё не вычислены зависимости queue.add(n); int dum; while(queue.size()>0){ //Пока есть что вычислять dum = queue.removeFirst(); if(dum%2==0){ //Проверяем чётность if(dum/2>1){ //Если вычисленная зависимость не принадлежит начальным состояниям stack.addLast(dum/2); //Добавляем в стек queue.add(dum/2); //Сохраняем, чтобы //вычислить дальнейшие зависимости } if(dum/2-1>1){ //Проверяем принадлежность к начальным состояниям stack.addLast(dum/2-1); //Добавляем в стек queue.add(dum/2-1); //Сохрнаяем, чтобы //вычислить дальнейшие зависимости } }else{ if((dum-1)/2>1){ //Проверяем принадлежность к начальным состояниям stack.addLast((dum-1)/2); //Добавляем в стек queue.add((dum-1)/2); //Сохрнаяем, чтобы //вычислить дальнейшие зависимости } if((dum-1)/2-1>1){ //Проверяем принадлежность к начальным состояниям stack.addLast((dum-1)/2-1); //Добавляем в стек queue.add((dum-1)/2-1); //Сохрнаяем, чтобы //вычислить дальнейшие зависимости } } /* Конкретно для этой задачи есть более элегантный способ найти все зависимости, здесь же показан достаточно универсальный */ } }

Полученный размер стека – то, сколько вычислений нам потребуется сделать. Именно так я получил упомянутое выше число 172.

Теперь мы поочередно извлекаем индексы и вычисляем для них значения по формулам – гарантируется, что все необходимые значения уже будут вычислены. Хранить будем как раньше – в хэш-таблице.

HashMap values = new HashMap(); values.put(0,1); //Важно добавить начальные состояния //в таблицу значений values.put(1,1); while(stack.size()>0){ int num = stack.removeLast(); if(!values.containsKey(num)){ //Эту конструкцию //вы должны помнить с абзаца о кешировании if(num%2==0){ //Проверяем чётность int value = values.get(num/2)+values.get(num/2-1); //Вычисляем значение values.add(num, value); //Помещаем его в таблицу }else{ int value = values.get((num-1)/2)-values.get((num-1)/2-1); //Вычисляем значение values.add(num, value); //Помещаем его в таблицу } }

Все необходимые значения вычислены, осталось только написать

Return values.get(n);

Конечно, такое решение гораздо более трудоёмкое, однако это того стоит.

Хорошо, математика - это красиво. А что с задачами, в которых не всё дано?

Для больше ясности разберём следующую задачу на одномерную динамику:

На вершине лесенки, содержащей N ступенек, находится мячик, который начинает прыгать по ним вниз, к основанию. Мячик может прыгнуть на следующую ступеньку, на ступеньку через одну или через 2. (То есть, если мячик лежит на 8-ой ступеньке, то он может переместиться на 5-ую, 6-ую или 7-ую.) Определить число всевозможных «маршрутов» мячика с вершины на землю.

Идея решения

На первую ступеньку можно попасть только одним образом - сделав прыжок с длиной равной единице. На вторую ступеньку можно попасть сделав прыжок длиной 2, или с первой ступеньки - всего 2 варианта. На третью ступеньку можно попасть сделав прыжок длиной три, с первой или со втрой ступенек. Т.е. всего 4 варианта (0->3; 0->1->3; 0->2->3; 0->1->2->3). Теперь рассмотрим четвёртую ступеньку. На неё можно попасть с первой ступеньки - по одному маршруту на каждый маршрут до неё, со второй или с третьей - аналогично. Иными словами, количество путей до 4-й ступеньки есть сумма маршрутов до 1-й, 2-й и 3-й ступенек. Математически выражаясь, F(N) = F(N-1)+F(N-2)+F(N-3) . Первые три ступеньки будем считать начальными состояниями.

Реализация через рекурсию

private static int f(int n){ if(n==1) return 1; if(n==2) return 2; if(n==3) return 4; return f(n-1)+f(n-2)+f(n-3); }

Здесь ничего хитрого нет.

Исходя из того, что, по большому счёту, простое решение на массиве из N элементов очевидно, я продемонстрирую тут решение на массиве всего из трёх.

Int vars = new int; vars=1;vars=2;vars=4; for(int i=3; i

Так как каждое следующее значение зависит только от трёх предыдущих, ни одно значение под индексом меньше i-3 нам бы не пригодилось. В приведённом выше коде мы записываем новое значение на место самого старого, не нужного больше. Цикличность остатка от деления на 3 помогает нам избежать кучи условных операторов. Просто, компактно, элегантно.

Там вверху ещё было написано про какую-то двумерную динамику?..

С двумерной динамикой не связано никаких особенностей, однако я, на всякий случай, рассмотрю здесь одну задачу и на неё.

В прямоугольной таблице NxM в начале игрок находится в левой верхней клетке. За один ход ему разрешается перемещаться в соседнюю клетку либо вправо, либо вниз (влево и вверх перемещаться запрещено). Посчитайте, сколько есть способов у игрока попасть в правую нижнюю клетку.

Идея решения

Логика решения полностью идентична таковой в задаче про мячик и лестницу - только теперь в клетку (x,y) можно попасть из клеток (x-1,y) или (x, y-1) . Итого F(x,y) = F(x-1, y)+F(x,y-1) . Дополнительно можно понять, что все клетки вида (1,y) и (x,1) имеют только один маршрут - по прямой вниз или по прямой вправо.

Реализация через рекурсию

Ради всего святого, не нужно делать двумерную динамику через рекурсию. Уже было упомянуто, что рекурсия менее выгодна, чем цикл по быстродействию, так двумерная рекурсия ещё и читается ужасно. Это только на таком простом примере она смотрится легко и безобидно.

Private static int f(int i, int j) { if(i==1 || j==1) return 1; return f(i-1, j)+f(i, j-1); }

Реализация через массив значений

int dp = new int; for(int i=0; iКлассическое решение динамикой, ничего необычного - проверяем, является ли клетка краем, и задаём её значение на основе соседних клеток.

Отлично, я всё понял. На чём мне проверить свои навыки?

В заключение приведу ряд типичных задач на одномерную и двумерную динамику, разборы прилагаются.

Взрывоопасность

При переработке радиоактивных материалов образуются отходы двух видов - особо опасные (тип A) и неопасные (тип B). Для их хранения используются одинаковые контейнеры. После помещения отходов в контейнеры последние укладываются вертикальной стопкой. Стопка считается взрывоопасной, если в ней подряд идет более одного контейнера типа A. Стопка считается безопасной, если она не является взрывоопасной. Для заданного количества контейнеров N определить количество возможных типов безопасных стопок.

Решение

Ответом является (N+1)-е число Фибоначчи. Догадаться можно было, просто вычислив 2-3 первых значения. Строго доказать можно было, построив дерево возможных построений.


Каждый основной элемент делится на два - основной (заканчивается на B) и побочный (заканчивается на A). Побочные элементы превращаются в основные за одну итерацию (к последовательности, заканчивающейся на A, можно дописать только B). Это характерно для чисел Фибоначчи.

Реализация

Например, так:

//Ввод числа N с клавиатуры N+=2; BigInteger fib = new BigInteger; fib=fib=BigInteger.ONE; for(int i=2; i

Подъём по лестнице

Мальчик подошел к платной лестнице. Чтобы наступить на любую ступеньку, нужно заплатить указанную на ней сумму. Мальчик умеет перешагивать на следующую ступеньку, либо перепрыгивать через ступеньку. Требуется узнать, какая наименьшая сумма понадобится мальчику, чтобы добраться до верхней ступеньки.

Решение

Очевидно, что сумма, которую мальчик отдаст на N-ой ступеньке, есть сумма, которую он отдал до этого плюс стоимость самой ступеньки. «Сумма, которую он отдал до этого» зависит от того, с какой ступеньки мальчик шагает на N-ую - с (N-1)-й или с (N-2)-й. Выбирать нужно наименьшую.

Реализация

Например, так:

Int Imax; //*ввод с клавиатуры числа ступенек* DP = new int; for(int i=0; i

Калькулятор

Имеется калькулятор, который выполняет три операции:

  • Прибавить к числу X единицу;
  • Умножить число X на 2;
  • Умножить число X на 3.

Определите, какое наименьшее число операций необходимо для того, чтобы получить из числа 1 заданное число N. Выведите это число, и, на следующей строке, набор исполненных операций вида «111231».

Решение

Наивное решение состоит в том, чтобы делить число на 3, пока это возможно, иначе на 2, если это возможно, иначе вычитать единицу, и так до тех пор, пока оно не обратится в единицу. Это неверное решение, т.к. оно исключает, например, возможность убавить число на единицу, а затем разделить на три, из-за чего на больших числах (например, 32718) возникают ошибки.

Правильное решение заключается в нахождении для каждого числа от 2 до N минимального количества действий на основе предыдущих элементов, иначе говоря: F(N) = min(F(N-1), F(N/2), F(N/3)) + 1 . Следует помнить, что все индексы должны быть целыми.

Для воссоздания списка действий необходимо идти в обратном направлении и искать такой индекс i, что F(i)=F(N) , где N - номер рассматриваемого элемента. Если i=N-1 , записываем в начало строки 1, если i=N/2 - двойку, иначе - тройку.

Реализация
int N; //Ввод с клавиатуры int a = new int; a= 0; { int min; for(int i=2; i1){ if(a[i]==a+1){ ret.insert(0, 1); i--; continue; } if(i%2==0&&a[i]==a+1){ ret.insert(0, 2); i/=2; continue; } ret.insert(0, 3); i/=3; } } System.out.println(a[N]); System.out.println(ret);

Самый дешёвый путь

В каждой клетке прямоугольной таблицы N*M записано некоторое число. Изначально игрок находится в левой верхней клетке. За один ход ему разрешается перемещаться в соседнюю клетку либо вправо, либо вниз (влево и вверх перемещаться запрещено). При проходе через клетку с игрока берут столько килограммов еды, какое число записано в этой клетке (еду берут также за первую и последнюю клетки его пути).

Требуется найти минимальный вес еды в килограммах, отдав которую игрок может попасть в правый нижний угол.