Цифровая подстанция. Обзор мировых тенденций развития. Современные тенденции развития радиопередающей техники

12.5. ТЕНДЕНЦИИ РАЗВИТИЯ ЭЛЕКТРОИЗМЕРИТЕЛЬНОЙ ТЕХНИКИ

Использование достижений микроэлектроники и вычислительной техники в электроизмерительной технике определяют в настоящее время одну из основных тенденций ее развития, для которой характерна компьютеризация средств измерений. Рассмотрим характерные формы проявления этой тенденции.

Прежде всего, она проявляется в постепенной замене аналоговых средств измерений цифровыми, которые, в свою очередь, становятся все более универсальными и «интеллектуальными».

В качестве примера рассмотрим этапы развития производства осциллографов на фирме «Хьюлет-Пакард» - одной из ведущих в этой области. Свои первые ламповые осциллографы НР130А и НР150А фирма выпустила еще в 1956 г., а первый полупроводниковый (НР180А) - в 1966 г. К 80-м годам этой и другими фирмами было выпущено огромное количество аналоговых осциллографов различного назначения, причем многие из них обладали прекрасными техническими характеристиками. Однако уже в 1980 г. фирма «Хьюлет-Пакард» пришла к выводу, что цифровая техника может предложить лучшее и более дешевое решение задачи регистрации, отображения и обработки аналоговых сигналов, а с 1986 г. вообще прекратила выпуск аналоговых осциллографов, заменив их цифровыми. В 1992 г. фирма выпускала уже целую серию цифровых осциллографов; в эту модульную серию 54700 входит, в частности, сменный блок 54721 А с полосой 1 ГГц и частотой дискретизации 4 Готсчет/с.

Аналогичный процесс прошел на фирме «Голд» (Gould, США). Свой первый цифровой осциллограф фирма выпустила в 1975 г., а в 1988 г. прекратила выпуск аналоговых. В 1992 г. фирма выпускала 15 моделей цифровых осциллографов с полосой от 7 до 200 МГц и частотой дискретизации от 0,02 до 1,6 Готсчет/с.

Если для визуального наблюдения исследуемых процессов достаточно разрешения 8 бит, то для более сложного и точного анализа этого часто недостаточно. Поэтому постоянно ведется работа по повышению точности цифровых осциллографов. Например, фирма «Николь Инструмент корп.» (Nicolet Instrument Corp., США) предлагает осциллографы серии 400 с разрешением по вертикали 14 бит, что, конечно, недостижимо для аналоговых осциллографов.

Цифровые осциллографы не просто заменяли аналоговые, но и предоставляли потребителям новые возможности, связанные со способностью новых приборов хранить, выводить, обрабатывать и сравнивать параметры наблюдаемых сигналов. Современные цифровые осциллографы выполняют множество функций анализа сигналов, включая анализ спектра с использованием алгоритмов быстрого преобразования Фурье. В них может быть встроен принтер или плоттер, позволяющие получать твердую копию протокола или графика. Наличие узлов стандартных интерфейсов позволяет подключать цифровой осциллограф к персональному компьютеру и вычислительной сети; более того, он сам обладает возможностями небольшого компьютера. Подобные осциллографы одними из первых начали выпускать японские фирмы «Хиоки» (Hioki, модель 8850) и «Иокогава» (Yokogawa, модели 3655 и 3656).

На примере цифровых осциллографов можно проследить одно из направлений компьютеризации электроизмерительной техники. Создаются новые средства измерений с цифровой обработкой сигналов измерительной информации и возможностью построения на их основе измерительно-вычислительных систем различного назначения. В эти измерительные приборы и системы встраиваются элементы компьютерной техники, обеспечивающие цифровую обработку сигналов, самодиагностику, коррекцию погрешностей, связь с внешними устройствами и т.д.

Другое направление связано с появлением в начале 80-х годов и широким распространением персональных компьютеров (IBM PC и других). Если у потребителя есть такой компьютер, то у него фактически есть многие узлы компьютерного средства измерений: вычислительное устройство, дисплей, устройство управления, корпус, источники питания и др. Недостает лишь устройств ввода измерительной информации в компьютер (аналоговых измерительных преобразователей, устройств гальванического разделения, масштабирования, нормализации и линеаризации, АЦП и др.), ее предварительной обработки (если желательно освободить от этой работы компьютер) и специального программного обеспечения.

Поэтому в 80-х годах устройства ввода аналоговой измерительной информации в персональные компьютеры (ПК) начали серийно выпускаться в виде плат, встраиваемых в кросс ПК, в виде наборов модулей, встраиваемых в общий корпус (крейт) расширяемых шасси ПК, или в виде автономных функциональных модулей, подключаемых к ПК через внешние разъемы.

Эффективная предварительная обработка информации в такого рода устройствах стала возможной с появлением специализированных больших интегральных схем - цифровых процессоров сигналов (ЦПС). Первые однокристалльные ЦПС выпустила в 1980 г. японская фирма «НИСи корп.» (NEC Corp.), с 1983 г. аналогичную продукцию начали выпускать фирмы «Фуджицу» (Fujitsu, Япония) и «Техас Инструменте» (Texas Instruments, (США)); позднее к ним присоединились «Аналог Дивайсис» (США), «Моторола» (Motorola, США) и др.

Нужно отметить по меньшей мере две особенности компьютерных средств измерений. Во-первых, они могут быть весьма просто приспособлены для измерений различных величин; поэтому на их основе строятся универсальные средства измерений. Во-вторых, все большую долю в их себестоимости занимает стоимость программного обеспечения, освобождающего потребителя от выполнения многих рутинных операций и создающего ему максимум удобств при решении основных задач измерений.

Примером могут служить так называемые виртуальные средства измерений. В них программным путем на дисплее ПК формируется изображение лицевой панели измерительного прибора. Этой панели на самом деле физически не существует, а сам прибор состоит, например, из ПК и встроенной в него измерительной платы. Тем не менее у потребителя создается полная иллюзия работы с обычным прибором: он может нажимать на клавиши управления, выбирая диапазон измерения, режим работы и т.д., получая, в конце концов, результат измерения.

Дальнейшая микроминиатюризация электронных компонентов привела, начиная с 80-х годов, к развитию еще одного направления компьютеризации средств измерений - к созданию не только «интеллектуальных» приборов и систем, но и «интеллектуальных» датчиков.

Такой датчик содержит не только чувствительный элемент, но и сложное электронное устройство, состоящее из аналоговых и аналого-цифровых преобразователей, а также микропроцессорных устройств с соответствующим программным обеспечением. Конструкция «интеллектуального» датчика позволяет устанавливать его в непосредственной близости от объекта исследований и производить ту или иную обработку измерительной информации. При этом в центр сбора данных, который может находиться на значительном расстоянии от объекта, информация передается с помощью сигналов, обладающих высокой помехоустойчивостью, что повышает точность измерений.

В качестве примера рассмотрим технические возможности «интеллектуального» датчика абсолютного давления, выпускаемого японской фирмой «Фуджи» (FUJI, модель FKA), который обеспечивает измерение давления жидкости, газа или пара в диапазоне от 0,16 до 30 бар с погрешностью не более 0,2% в диапазоне рабочих температур от -40 до + 85°С. Он состоит из емкостного чувствительного элемента и электронного устройства, смонтированного в стальном корпусе объемом со спичечный коробок. Его питание осуществляется от внешнего источника постоянного тока с напряжением от 11 до 45 В, который может располагаться в нескольких километрах от датчика в центре сбора данных. Измерительная информация передается по проводам источника питания (двухпроводный датчик) в аналоговой форме - постоянным током от 4 до 20 мА, а также цифровым сигналом, наложенным на аналоговый.

Датчик может быть легко превращен в измерительный прибор путем установки на нем четырехразрядного цифрового жидкокристаллического индикатора или аналогового милливольтметра. Такими датчиками можно управлять с помощью специальных пультов и объединять их в измерительную систему. Каждый датчик осуществляет операции самодиагностики, линеаризации функции преобразования, масштабирования, установки диапазона измерений, температурной компенсации и т.д.

Наряду с компьютеризацией электроизмерительной техники интенсивно развивается ее метрологическое обеспечение, причем эталоны высокой точности становятся доступными промышленности. Например, еще в 1982 г. фирма «Флюк» (Fluke, США) выпустила калибратор напряжения для поверки 6,5- и 7,5-разрядных мультиметров. Этот прибор (модель 5440А), построенный на базе ЦАП с широтно-импульсной модуляцией, обеспечивает относительную погрешность не более 0,0004% при работе непосредственно в цехе.

Для построения современных средств измерений с наиболее высокими метрологическими характеристиками, включая эталоны вольта и ампера, решающее значение имеет использование квантовых эффектов Б. Джозефсона и Холла.

Эффект Б. Джозефсона был предсказан в 1962 г. английским физиком Б. Джозефсоном и экспериментально обнаружен в 1963 г. американскими физиками П. Андерсоном и Дж. Роуэллом. Одно из проявлений данного эффекта состоит в следующем. При облучении контакта Б. Джозефсона - тонкого слоя диэлектрика между двумя сверхпроводниками - высокочастотным электромагнитным полем, на вольт-амперной характеристике такого контакта возникают скачки напряжения, пропорциональные частоте. Высокая точность воспроизведения скачков напряжения на контактах Б. Джозефсона позволила в 80-х годах построить эталоны вольта с погрешностями не более 0,0001%.

Использование эффекта Б. Джозефсона и явления квантования магнитного поля в односвязных сверхпроводниках привело к созданию чрезвычайно чувствительных сверхпроводящих квантовых интерференционных приборов - СКВИДов, измеряющих магнитные потоки. Применение измерительных преобразователей различных физических величин в магнитные потоки позволило создать на основе СКВИДов измерительные приборы и устройства различного назначения, обладающие рекордно высокой чувствительностью: гальванометры, компараторы, термометры, магнитометры, градиентометры, усилители. На основе эффекта Б. Джозефсона строятся и другие устройства, служащие для обработки измерительной информации, например, АЦП и цифровые процессоры сигналов с тактовыми частотами свыше 10 ГГц.

Квантовый эффект Холла был открыт в 1980 г. К. фон Клитцингом (ФРГ). Эффект наблюдается при низких температурах (около 1 К) и проявляется в виде горизонтального участка на графике зависимости холловского сопротивления полупроводниковых датчиков Холла от магнитной индукции. Погрешность сопротивления, соответствующего этому участку, не превышает 0,00001%. Это позволило использовать квантовый эффект Холла для создания эталонов электрического сопротивления.

Использование квантовых эффектов Б. Джозефсона и Холла позволило разработать эталоны постоянного электрического тока, превышающие по точности эталоны на основе токовых весов, применявшихся почти всю вторую половину XX в. В нашей стране новый государственный первичный эталон введен с 1992 г. Он воспроизводит ампер с погрешностью не более 0,00002% (токовые весы обеспечивали погрешность не более 0,0008%).

Рассмотренные эффекты проявляются при низких температурах, что служит главным препятствием для их широкого использования. Однако открытие в 1986 г. высокотемпературных сверхпроводников позволяет ожидать создания средств измерений, построенных на интегральных схемах и работающих при температурах около 100 К. Это был бы новый качественный скачок в развитии электроизмерительной техники.

СПИСОК ЛИТЕРАТУРЫ

12.1. Депре М. О гальванометре, показания которого пропорциональны силе тока // Электричество. 1884. № 24.

12.2. Шателен М. Счетчики электрической энергии // Электричество. 1893. № 20.

12.3. Жерар Эрик. Курс электричества. Т. 1. Санкт-Петербург, 1896.

12.4. Чернышев А. Методы измерений высоких напряжений и новый абсолютный высоковольтный вольтметр // Электричество. 1910. №15.

12.5. Ферингер А.Б. Новейшие измерительные приборы (обзор) // Электричество. 1912. №1.

12.6. Маликов М.Ф. Основные электрические единицы в их современном состоянии // Электричество. 1924. № 3.

12.7. Грун К. Электротехнические измерительные приборы. М.: Гостехиздат, 1927.

12.8. Банденбургер В.И. Электрические телеизмерения // Электричество. 1931. № 17.

12.9. Шумиловский Н.Н. Электрические счетчики: теория, расчет, конструирование. Л.: Кубуч, 1932.

12.10. Стекольников И.С. Катодный осциллограф для контактного фотографирования // Электричество. 1933. № 12.

12.11. Городецкий С.С. Измерения на высоком напряжении. М.-Л.: Энергоиздат, 1934.

12.12. Конструкции электроизмерительных приборов / Под ред. Н.Н. Пономарева. Л. - М.: Энергоиздат, 1935.

12.13. Кейнат Г. Электроизмерительная техника. Т. 1. Л.: Ленинградский индустриальный институт, 1935.

12.14. Кейкат Г. Электроизмерительная техника. Т.2. Л.: Ленинградский индустриальный институт, 1937.

12.15. Кузнецов Б.Г. История энергетической техники. М.: Гостехиздат, 1937.

12.16. Электрические и магнитные измерения / Под ред. Е.Г. Шрамкова. М.-Л.: ОНТИ, 1937.

12.17. Темников Ф.Е., Харченко P.P. Электрические измерения неэлектрических величин. М.-Л.: Госэнергоиздат, 1948.

12.18. Шкурин Г.П. Электроизмерительные приборы: Справочник-каталог М.: Машгиз, 1948.

12.19.Туричин A.M. Электрические измерения неэлектрических величин. М.-Л.: Госэнергоиздат, 1951.

12.20. Карандеев К.Б. Методы электрических измерений. М.-Л.: Госэнергоиздат, 1952.

12.21. Белькинд Л.Д., Конфедератов И.Я., ШнейбергЯ.А. История техники. М.: Госэнергоиздат, 1956.

12.22. История энергетической техники СССР. Т.2. Электротехника. М.: Госэнергоиздат, 1957.

12.23.Веселовский О.Н. Михаил Осипович Доливо-Добровольский. М.: Госэнергоиздат, 1958.

12.24. История энергетической техники / Л.Д. Белькинд, О.Н. Веселовский, И.Я. Конфедератов, Я.А. Шнейберг. М.: Госэнергоиздат, 1960.

12.25. Темников Ф.Е. Теория развертывающих систем. М.-Л.: Госэнергоиздат, 1963.

12.26.Веселовский О.Н., ШнейбергЯ.А. Энергетическая техника и ее развитие. М.: Высшая школа, 1976.

12.27.Стил Р. Принципы дельта-модуляции. М.: Связь, 1979.

12.28. Арутюнов В.О. Избранные труды в области электрических измерений, теории и прикладных вопросов метрологии. М.: Изд-во стандартов, 1979.

12.29. Бароне А., Патерно Д. Эффект Джозефсона: физика и применения. М.: Мир, 1984.

12.30. Сиберт У.М. Цепи, сигналы, системы. Ч. 1.М.:Мир, 1988.

12.31. Электроника: Энциклопедический словарь / Гл. ред. В.Г Колесников. М.: Сов. энциклопедия, 1991.

12.32. Волшебство аналоговой схемотехники // Электроника (русский перевод). 1993. № 11/12.

12.33. Уилер Р. Испытания и измерения за 40 лет // Электроника (русский перевод). 1993. № 11/12.

12.34. Веселовский О.Н., Шнейберг Я.А. Очерки по истории электротехники. М.: Изд-во МЭИ, 1993.

12.35.Герасимов В.Г., Орлов И.Н., Филиппов Л.И. От знаний - к творчеству. М.: Изд-во МЭИ, 1995.

Из книги Высокочастотный автомобиль автора Бабат Георгий

ПОБЕДА СОВЕТСКОЙ ТЕХНИКИ В старые времена одиночка-изобретатель мог создать нечто новое. Паровую машину изобрел и построил Ползунов. На далеком руднике Черепанов изобрел и построил паровоз. Изобретатель капитан Можайский создал аэроплан.И Можайский, и Ползунов, и

Из книги Приборостроение автора Бабаев М А

56. Предпосылки успешного развития современного отечественного приборостроения. Основные тенденции в развитии приборостроения Всего 20 лет назад о современном уровне компьютеризации страны можно было только мечтать, сегодня все это реальность. В связи со всеми этими

Из книги Работы по металлу автора Коршевер Наталья Гавриловна

Техники декоративной обработки металлов В этой части книги представлены основные техники декоративной обработки металлов. В древности многие кузнецы владели богатым набором методов и создавали замечательные произведения искусства, достойные царского двора. Поэтому

Из книги Сертификация сложных технических систем автора Смирнов Владимир

4.3. Сертификация качества авиационной техники 4.3.1. Нормы летной годности Международная организация гражданской авиации (ИКАО), одной из главных задач которой является обеспечение безопасности полетов, установила, что страны-члены ИКАО должны выдавать

Из книги АвтоНАШЕСТВИЕ на СССР. Трофейные и лендлизовские автомобили автора Соколов Михаил Владимирович

На выставке трофейной техники Для наилучшего представления об атмосфере этих показов приведем выдержки из статьи известного отечественного автоконструктора Ю. А. Долматовского, посетившего в то время столичное собрание:«Эта выставка не похожа на международный

Из книги Роботы сегодня и завтра автора Геттнер Рейнгард

Тенденции развития Поскольку разработка, выпуск, применение промышленных роботов быстро и динамично прогрессируют, обобщение результатов международной, соответственно национальной, научно-технической работы в перспективе на будущее становится сложным. Динамика этих

Из книги 100 великих достижений в мире техники автора Зигуненко Станислав Николаевич

Чудеса военной техники Все знают, что драться – плохо. А воевать – тем более. Тем не менее всю свою историю люди только и делают, что воюют между собой, а самые лучшие идеи, изобретения применяют прежде всего в ратном

Из книги Совершенство техники автора Юнгер Фридрих Георг

КНИГА ПЕРВАЯ СОВЕРШЕНСТВО ТЕХНИКИ Девиз: Всему есть место, но для каждой вещи свое. Надпись на складе инструментов 1 Сочинения в жанре технической утопии, как показывает наблюдение, отнюдь не редкость в литературе и даже напротив: их так много и читательский спрос на них

Из книги Искусство ручного ткачества автора Цветкова Наталья Николаевна

ЕСТЬ ЛИ ПРЕДЕЛЫ «СОВЕРШЕНСТВУ ТЕХНИКИ»? Настоящее издание включает в себя две работы Фридриха Георга Юнгера (1898–1977) - «Совершенство техники» и «Машина и собственность». Их объединяет одна тема - техника. Поэтому, повинуясь гипнозу установившейся академической

Из книги Нанотехнологии [Наука, инновации и возможности] автора Фостер Линн

1.4 Традиционные техники ткачества Эволюция ткацких станков способствовала развитию различных техник ручного ткачества. К одному из древнейших способов получения орнаментированной ткани относится так называемое «закладное» ткачество. Оно было известно в Древнем

Из книги История электротехники автора Коллектив авторов

16.2. Тенденции развития методов доставки препаратов Нанотехнологии играют важную роль в развитии методов введения и доставки препаратов внутри организма, особенно в отношении малых и белковых молекул. В настоящее время ведутся очень интересные разработки методик ввода

Из книги Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г. автора Коллектив авторов

4.14. ВЛИЯНИЕ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ НА РАЗВИТИЕ ТЭ Для создания новых устройств при помощи их математических моделей важное значение имеет возможность представления количественных характеристик, определяющих исследуемые процессы нового устройства, в виде

Из книги Очень общая метрология автора Ашкинази Леонид Александрович

11.4.4. РАЗВИТИЕ ПОЛУПРОВОДНИКОВОЙ ИНФОРМАЦИОННОЙ ТЕХНИКИ Создание транзисторов в 50-х годах положило начало развитию полупроводниковой информационной техники.Первый отечественный точечный транзистор обладал усилительными свойствами, однако большой технологический

Из книги Микроволновые печи нового поколения [Устройство, диагностика неисправностей, ремонт] автора Кашкаров Андрей Петрович

Из книги автора

Эталоны для физики и техники Эталон длины Сначала эталоны были естественные, например, эталоном длины был, возможно, пояс короля Карла такого-то. Потом король слегка разъелся и экономика сошла с ума. Поэтому взяли длину маятника с определенным периодом (привязав тем

Из книги автора

3.7. Тенденции развития и новые технологии Производство микроволновых печей сопряжено с непрерывным развитием творческой мысли, с применением новых технологий, среди которых в первую очередь стоит отметить изобретение и использование биокерамического покрытия, системы

В прошедшем столетии были сделаны многие открытия и изобретения, сыгравшие революционную роль в развитии современной цивилизации.

    создание и развитие средств связи, особенно беспроводной.

    Изобретение кинематографа.

    Возникновение и развитие авиации и космической техники. Современные летательные аппараты по своим техническим и конструктивным характеристикам не сопоставимы с первыми летательными аппаратами.

    Но наиболее разительный прогресс произошел в области вычислительной техники. (ок 50 лет назад первые ЭВМ имели вез ок. 30 тонн, площадь ок. 200м 2)

время выполнения вычислений измерялось часами или сутками.

Теперь ЭВМ можно разместить на кремниевом кристалле S=5мм 2 , время выполнения расчетов – микросекунды, стоят мало.

При этом в отличие от 1ых ЭВМ, которые программируют в математических кодах и способны были выполнять главным образом только громоздкие математические вычисления, то современные ЭВМ способны доказывать теоремы, переводить текст, воспроизводить движущиеся объекты.

Появление первой машины для выполнения четырех арифметических действий дотируется началом 17 в. (1623 г В. Шикард изобрел мех. машину сложения, вычитания, частично умножения и деления), но более известным оказался настольный арифмометр (1642г.) франц. ученым Паскалем. 1671г. Лейбниц изобрел т.н. зубчатое колесо Лейбница, позволяющее выполнять 4 арифметические операции.

В 19 в. обострилась потребность в выполнении вычислении, связанных с обработкой результатов астрономических наблюдений, расчеты, связанные с составление математических таблиц. Поэтому в 1823 англ. математик Чарльз Бэббидж начал разрабатывать автоматизированную разностную машину, приводимую в действие паровым двигателем.

Машина должна была вычислять значения полиномов и печатать результаты на негативе для фотопечати, однако существующее в то время технические средства не дали возможности завершить воплощение этой идеи, а кроме того, сам Бэббидж увлекся проектированием более мощной счетной машины. Новая счетная машина Бэббиджа получила название «аналитическая».

1894 г. он изложил ее основные принципы, которые были воплощены в ткацком станке программы с перфокарточным управлением француза Жаккаром.

Аналитическая машина явилась одной из первых программируемых автоматических вычислительных машин с последовательным управлением. Она имела арифметическое устройство и память.

Меценат проекта была графиня Ада Августа Лавлейс – первый женщина программист. В честь ее назван язык программирования «Ада».

В конце 19 в. Холлерит разработал машину с перфокарточным вводом, способную автоматически классифицировать и составлять таблицу данных. Она была использована в 1890 г. в Америке на ней проведены переписи населения. Программа считывалась с перфокарты с помощью электроконтактных щеток. В качестве цифровых счетчиков – эм реле.

1896 г. Хоррелит основал фирму, предшественницу IBM.

После смерти Бэббиджа заметно прогрессов не было.

скорость вычисление механич. или элетромех. машин была ограничена, поэтому в 30хх гг. 20 в началась разработка электронных вычислительных машин (ЭВМ). На основе вакуумных 3х электродных лампах (триодах), которые изобрел в 1906 Лид Фрест.

Первая универсальная ЭВМ «Эниак» была разработана в пенсильваском институте США (1940-1946 г.) – разработка численных таблиц для вычисления траектории полета объектов. (18 тыс. электронных плат, 140 кВт, 10ая СС, программировалась вручную с помощью переключателей.

Современные тенденции развития средств вычислительной техники.

В настоящее врем в мире происходит переход от индустриального общества к информационному. Если главным содержанием индустриального общества было производство и потребление мат. благ, то движущей силой информационного общества является создание и потребление информационных ресурсов различного типа и назначения. При этом достижение экономических и социальных результатов определяется не сколько и не столько наличием мат.-энергетических ресурсов, сколько масштабом и темпами информатизации общества и широким использованием информационных технологий во всех сферах человеческой деятельности.

Независимость от различия и особенностей процессов информации в различных областях общественной жизни для них характерно наличие 3х составляющих:

    идентичность (единообразие) основных средств производства (средства выч. техники и информатики)

    идентичность «сырья» (исходные данные, подлежащие анализу и обработке)

    Идентичность выпускаемой продукции («обработанная» информация)

Ключевая роль в инфраструктуре информации принадлежит системным телекоммуникациям, а также выч. системам и их сетям.

В этих областях сосредоточены новейшие средства выч. техники, информатики и связи, а также используются наиболее прогрессивные информационные технологии.

В прошедшей истории развития ЭВТехники (начавшиеся с 40х гг 20в) можно выделить 4 поколения ЭВМ, отличающихся между собой элементной базой, функционально логической организацией, конструктивно-тех. исполнением, программным обеспечением, тех и эксплуатационным характеристиками режимами пользования.

Смене поколений сопутствовала изменение тех-эксплуатацион и тех-

экономических показателей ЭВМ.

В первую очередь это:

быстродействие, емкость памяти, надежность, стоимость.

Одновременно этому сопутствовала тенденция совершенствования программного обеспечения и повышение эффективности использования и обращения к ней.

В настоящее время ведутся работы над создание ЭВМ 5ого поколения, которые приблизили реальность создание искина.

Классификация средств эвТехники

К настоящему времени в мире уже произведенные работают и вновь создаются миллионы ЭВМ различного типа, класса и уровня.

ЭВТ принято делить на аналоговую и цифровую.

В АВМ информация представляется соответствующими значениями тех или иных аналогов (непрерывных физ. величин) – тока, напряжения, угла поворота и т.д.

АВМ обеспечивают приемлемое быстродействие, но умеренную точность вычислений ок. 10 -2 -10 -3

АВМ имеют достаточно ограниченное распространение и применяются главным образом в НИИ и проектно-конструкторских организациях при разработке исследований и совершенстве след. образцов техники, т.е. АВМ относятся к области специализируемых ЭВМ.

Более широкое распространение получили ЦВМ, в которых информация отображается с помощью цифровых или бинарных кодов.

Быстрые темпы развития и смены моделей ЦВМ затрудняют использование какой-либо их стандартной классификации.

Академик Глужков отмечал, что можно выделить 3 глобальных сферы, требующие использования качественно различных типов ЭВМ, а и.:

    традиционное применение ЭВМ для автоматизированных вычислений

    использование ЭВМ в различных системах управления (с 60х гг - сфера в наибольшей степени предполагает использование линии ЭВМ)

Машины этого профиля должны отвечать след. требованиям:

    более дешевыми по сравнению с большими централизованными ЭВМ.

    более надежными, особенно при работе непосредственно в контуре управления.

    обладать большей гибкостью и адаптивностью к условиями работы

    было архитектурно прозрачным, т.е. структура и функции ЭВМ должны быть понятны широкому пользователю.

3. Для решения задач искусственного интеллекта.

Рынок ЭВМ имеет широкий диапазон классов и моделей ЭВМ. Например, IBM, выпускающий приблизительно 80% мирового машинного парка производит главным образом 4 класса компьютеров:

    большие ЭВМ (mainframe ) – многопользовательские машины с централизованной обработкой информацию и различными формами удаленного доступа. По оценкам специалистов IBM ок. 50% всего объема данных в информационных системах мира должны хранится в больших машинах. Новое их поколение предназначено для использования в сетях в качестве крупных серверов.

Развитие ЭВМ данного класса имеет большое значение и для РФ, т.к. у нас имеется огромный задел по программе ЕС ЭВМ, заимствовавших архитектуру IBM 360 / 310 , поэтому принято решение продолжить развитие этого направления и в 1993 г. с IBM было подписано соглашение, согласно которому РФ получила право производить 23 вида новейших моделей – аналогов IBM с производительностью от 1,5 до 167 миллионов операций в сек.

    Машины RS / 6000 , у которых высокая производительность и предназначены для построения работы станций, для работы с графикой, для UNIX серверов и кластерных комплексов для научных исследований.

    Средние ЭВМ в первую очередь для работы в финансовых структурах (бизнес компьютеры). В них особенное внимание уделяется сохранению и безопасности данных, также программной совместимости. Эти машины используются в качестве серверов локальных сетей.

    Компьютеры на платформе микропроцессоров Intel

    Вычислительные системы, использующие параллельную работу.

Можно использовать след. классификацию средств ЭВМ на основе их разделения по быстроте действия :

    супер ЭВМ , для решения сложных вычислительных задач и для обслуживания крупнейших информационных банков данных

    большие ЭВМ , для ведомств, территориальных и региональных вычислительных центров.

    средние ЭВМ , для АСУТП (АСУ технологического процесса) и АСУП (производства), а также для управления распределенной обработкой информации в качестве серверов.

    персональные и профессиональные ЭВМ на их базе формируются АРМ (автоматизированные рабочие места) для специалистов различного профиля.

    встраиваемые микропроцессоры (микро ЭВМ) для автоматизированного управления отдельными устройствами и механизмами.

РФ испытывает потребность:

Супер ЭВМ ~ 100-200 шт.

Большие ЭВМ ~ 1000 шт.

Средние ЭВМ ~ 10 4 -10 5 шт

ТЕНДЕНЦИИ РАЗВИТИЯ ЭЛЕКТРОИЗМЕРИТЕЛЬНОЙ ТЕХНИКИ

Использование достижений микроэлектроники и вычислительной техники в электроизмерительной технике определяют в настоящее время одну из основных тенденций ее развития, для которой характерна компьютеризация средств измерений. Рассмотрим характерные формы проявления этой тенденции.

Прежде всего, она проявляется в постепенной замене аналоговых средств измерений цифровыми, которые, в свою очередь, становятся все более универсальными и «интеллектуальными».

В качестве примера рассмотрим этапы развития производства осциллографов на фирме «Хьюлет‑Пакард» – одной из ведущих в этой области. Свои первые ламповые осциллографы НР130А и НР150А фирма выпустила еще в 1956 г., а первый полупроводниковый (НР180А) – в 1966 г. К 80‑м годам этой и другими фирмами было выпущено огромное количество аналоговых осциллографов различного назначения, причем многие из них обладали прекрасными техническими характеристиками. Однако уже в 1980 г. фирма «Хьюлет‑Пакард» пришла к выводу, что цифровая техника может предложить лучшее и более дешевое решение задачи регистрации, отображения и обработки аналоговых сигналов, а с 1986 г. вообще прекратила выпуск аналоговых осциллографов, заменив их цифровыми. В 1992 г. фирма выпускала уже целую серию цифровых осциллографов; в эту модульную серию 54700 входит, в частности, сменный блок 54721 А с полосой 1 ГГц и частотой дискретизации 4 Готсчет/с.

Аналогичный процесс прошел на фирме «Голд» (Gould, США). Свой первый цифровой осциллограф фирма выпустила в 1975 г., а в 1988 г. прекратила выпуск аналоговых. В 1992 г. фирма выпускала 15 моделей цифровых осциллографов с полосой от 7 до 200 МГц и частотой дискретизации от 0,02 до 1,6 Готсчет/с.

Если для визуального наблюдения исследуемых процессов достаточно разрешения 8 бит, то для более сложного и точного анализа этого часто недостаточно. Поэтому постоянно ведется работа по повышению точности цифровых осциллографов. Например, фирма «Николь Инструмент корп.» (Nicolet Instrument Corp., США) предлагает осциллографы серии 400 с разрешением по вертикали 14 бит, что, конечно, недостижимо для аналоговых осциллографов.

Цифровые осциллографы не просто заменяли аналоговые, но и предоставляли потребителям новые возможности, связанные со способностью новых приборов хранить, выводить, обрабатывать и сравнивать параметры наблюдаемых сигналов. Современные цифровые осциллографы выполняют множество функций анализа сигналов, включая анализ спектра с использованием алгоритмов быстрого преобразования Фурье. В них может быть встроен принтер или плоттер, позволяющие получать твердую копию протокола или графика. Наличие узлов стандартных интерфейсов позволяет подключать цифровой осциллограф к персональному компьютеру и вычислительной сети; более того, он сам обладает возможностями небольшого компьютера. Подобные осциллографы одними из первых начали выпускать японские фирмы «Хиоки» (Hioki, модель 8850) и «Иокогава» (Yokogawa, модели 3655 и 3656).

На примере цифровых осциллографов можно проследить одно из направлений компьютеризации электроизмерительной техники. Создаются новые средства измерений с цифровой обработкой сигналов измерительной информации и возможностью построения на их основе измерительно‑вычислительных систем различного назначения. В эти измерительные приборы и системы встраиваются элементы компьютерной техники, обеспечивающие цифровую обработку сигналов, самодиагностику, коррекцию погрешностей, связь с внешними устройствами и т.д.

Другое направление связано с появлением в начале 80‑х годов и широким распространением персональных компьютеров (IBM PC и других). Если у потребителя есть такой компьютер, то у него фактически есть многие узлы компьютерного средства измерений: вычислительное устройство, дисплей, устройство управления, корпус, источники питания и др. Недостает лишь устройств ввода измерительной информации в компьютер (аналоговых измерительных преобразователей, устройств гальванического разделения, масштабирования, нормализации и линеаризации, АЦП и др.), ее предварительной обработки (если желательно освободить от этой работы компьютер) и специального программного обеспечения.

Поэтому в 80‑х годах устройства ввода аналоговой измерительной информации в персональные компьютеры (ПК) начали серийно выпускаться в виде плат, встраиваемых в кросс ПК, в виде наборов модулей, встраиваемых в общий корпус (крейт) расширяемых шасси ПК, или в виде автономных функциональных модулей, подключаемых к ПК через внешние разъемы.

Эффективная предварительная обработка информации в такого рода устройствах стала возможной с появлением специализированных больших интегральных схем – цифровых процессоров сигналов (ЦПС). Первые однокристалльные ЦПС выпустила в 1980 г. японская фирма «НИСи корп.» (NEC Corp.), с 1983 г. аналогичную продукцию начали выпускать фирмы «Фуджицу» (Fujitsu, Япония) и «Техас Инструменте» (Texas Instruments, (США)); позднее к ним присоединились «Аналог Дивайсис» (США), «Моторола» (Motorola, США) и др.

Нужно отметить по меньшей мере две особенности компьютерных средств измерений. Во‑первых, они могут быть весьма просто приспособлены для измерений различных величин; поэтому на их основе строятся универсальные средства измерений. Во‑вторых, все большую долю в их себестоимости занимает стоимость программного обеспечения, освобождающего потребителя от выполнения многих рутинных операций и создающего ему максимум удобств при решении основных задач измерений.

Примером могут служить так называемые виртуальные средства измерений. В них программным путем на дисплее ПК формируется изображение лицевой панели измерительного прибора. Этой панели на самом деле физически не существует, а сам прибор состоит, например, из ПК и встроенной в него измерительной платы. Тем не менее у потребителя создается полная иллюзия работы с обычным прибором: он может нажимать на клавиши управления, выбирая диапазон измерения, режим работы и т.д., получая, в конце концов, результат измерения.

Дальнейшая микроминиатюризация электронных компонентов привела, начиная с 80‑х годов, к развитию еще одного направления компьютеризации средств измерений – к созданию не только «интеллектуальных» приборов и систем, но и «интеллектуальных» датчиков.

Такой датчик содержит не только чувствительный элемент, но и сложное электронное устройство, состоящее из аналоговых и аналого‑цифровых преобразователей, а также микропроцессорных устройств с соответствующим программным обеспечением. Конструкция «интеллектуального» датчика позволяет устанавливать его в непосредственной близости от объекта исследований и производить ту или иную обработку измерительной информации. При этом в центр сбора данных, который может находиться на значительном расстоянии от объекта, информация передается с помощью сигналов, обладающих высокой помехоустойчивостью, что повышает точность измерений.

В качестве примера рассмотрим технические возможности «интеллектуального» датчика абсолютного давления, выпускаемого японской фирмой «Фуджи» (FUJI, модель FKA), который обеспечивает измерение давления жидкости, газа или пара в диапазоне от 0,16 до 30 бар с погрешностью не более 0,2% в диапазоне рабочих температур от ‑40 до + 85°С. Он состоит из емкостного чувствительного элемента и электронного устройства, смонтированного в стальном корпусе объемом со спичечный коробок. Его питание осуществляется от внешнего источника постоянного тока с напряжением от 11 до 45 В, который может располагаться в нескольких километрах от датчика в центре сбора данных. Измерительная информация передается по проводам источника питания (двухпроводный датчик) в аналоговой форме – постоянным током от 4 до 20 мА, а также цифровым сигналом, наложенным на аналоговый.

Датчик может быть легко превращен в измерительный прибор путем установки на нем четырехразрядного цифрового жидкокристаллического индикатора или аналогового милливольтметра. Такими датчиками можно управлять с помощью специальных пультов и объединять их в измерительную систему. Каждый датчик осуществляет операции самодиагностики, линеаризации функции преобразования, масштабирования, установки диапазона измерений, температурной компенсации и т.д.

Наряду с компьютеризацией электроизмерительной техники интенсивно развивается ее метрологическое обеспечение, причем эталоны высокой точности становятся доступными промышленности. Например, еще в 1982 г. фирма «Флюк» (Fluke, США) выпустила калибратор напряжения для поверки 6,5‑ и 7,5‑разрядных мультиметров. Этот прибор (модель 5440А), построенный на базе ЦАП с широтно‑импульсной модуляцией, обеспечивает относительную погрешность не более 0,0004% при работе непосредственно в цехе.

Для построения современных средств измерений с наиболее высокими метрологическими характеристиками, включая эталоны вольта и ампера, решающее значение имеет использование квантовых эффектов Б. Джозефсона и Холла.

Эффект Б. Джозефсона был предсказан в 1962 г. английским физиком Б. Джозефсоном и экспериментально обнаружен в 1963 г. американскими физиками П. Андерсоном и Дж. Роуэллом. Одно из проявлений данного эффекта состоит в следующем. При облучении контакта Б. Джозефсона – тонкого слоя диэлектрика между двумя сверхпроводниками – высокочастотным электромагнитным полем, на вольт‑амперной характеристике такого контакта возникают скачки напряжения, пропорциональные частоте. Высокая точность воспроизведения скачков напряжения на контактах Б. Джозефсона позволила в 80‑х годах построить эталоны вольта с погрешностями не более 0,0001%.

Использование эффекта Б. Джозефсона и явления квантования магнитного поля в односвязных сверхпроводниках привело к созданию чрезвычайно чувствительных сверхпроводящих квантовых интерференционных приборов – СКВИДов, измеряющих магнитные потоки. Применение измерительных преобразователей различных физических величин в магнитные потоки позволило создать на основе СКВИДов измерительные приборы и устройства различного назначения, обладающие рекордно высокой чувствительностью: гальванометры, компараторы, термометры, магнитометры, градиентометры, усилители. На основе эффекта Б. Джозефсона строятся и другие устройства, служащие для обработки измерительной информации, например, АЦП и цифровые процессоры сигналов с тактовыми частотами свыше 10 ГГц.

Квантовый эффект Холла был открыт в 1980 г. К. фон Клитцингом (ФРГ). Эффект наблюдается при низких температурах (около 1 К) и проявляется в виде горизонтального участка на графике зависимости холловского сопротивления полупроводниковых датчиков Холла от магнитной индукции. Погрешность сопротивления, соответствующего этому участку, не превышает 0,00001%. Это позволило использовать квантовый эффект Холла для создания эталонов электрического сопротивления.

Использование квантовых эффектов Б. Джозефсона и Холла позволило разработать эталоны постоянного электрического тока, превышающие по точности эталоны на основе токовых весов, применявшихся почти всю вторую половину XX в. В нашей стране новый государственный первичный эталон введен с 1992 г. Он воспроизводит ампер с погрешностью не более 0,00002% (токовые весы обеспечивали погрешность не более 0,0008%).

Рассмотренные эффекты проявляются при низких температурах, что служит главным препятствием для их широкого использования. Однако открытие в 1986 г. высокотемпературных сверхпроводников позволяет ожидать создания средств измерений, построенных на интегральных схемах и работающих при температурах около 100 К. Это был бы новый качественный скачок в развитии электроизмерительной техники.


Термин «электрический ток» был введен A.M. Ампером (см. § 2.5).

Если цепь питается от батареи, то ток пропорционален ЭДС элемента (в числителе), а в знаменателе кроме сопротивления цепи указывается и внутреннее сопротивление элемента.

Термин «электротехника» стал употребляться именно после Международной «электротехнической» выставки 1881 г. и последовавшего за ней конгресса электриков.

Без линии электропередачи постоянного тока 800 кВ (0,48 тыс. км).

Указаны линейные напряжения в группе трансформаторов.

Каждому габариту соответствовал свой внутренний диаметр корпуса статора (станины).

Появление ПК справедливо считают грациозной научно-технической революцией, сравнимой по масштабам с изобретением электричества, радио. К моменту рождения ПК вычислительная техника уже существовала четверть века. Старые ЭВМ были отделены от массового пользователя, с ними работали специалисты (электронщики, программисты, операторы). Рождение ПК сделало ЭВМ массовым инструментом. Облик ЭВМ кардинально изменился: она стала дружественной (т.е. способной вести культурный диалог с человеком на визуально комфортном экране). В настоящее время в мире используются сотни миллионов ПК как на производстве, так и в повседневной жизни.

Информатика и её практические результаты становятся важнейшим двигателем научно-технического прогресса и развития человеческого общества. Её технической базой являются средства обработки и передачи информации. Скорость их развития поразительна, в истории человечества этому бурно развивающемуся процессу нет аналога. Можно утверждать, что история вычислительной техники уникальна, прежде всего, фантастическими темпами развития аппаратных и программных средств. В последнее время идет активный рост слияния компьютера, средств связи и бытовых приборов в единый набор. Будут создаваться новые системы, размещенные на одной интегральной схеме и включающие кроме самого процессора и его окружения, еще и программное обеспечение.

Уже сейчас на смену универсальным компьютерам приходят новые устройства - смартфоны, решающие конкретный спектр задач своего владельца. Развивается система карманных компьютеров.

Характерной чертой компьютеров пятого поколения обязано быть внедрение искусственного интеллекта и естественных языков общения. Предполагается, что вычислительные машины пятого поколения будут просто управляемы. Пользователь сумеет голосом подавать машине команды.

Предполагается, что XXI век будет веком наибольшего использования достижений информатики в экономике, политике, науке, образовании, медицине, быту, военном деле.

Главной тенденцией развития вычислительной техники в настоящее время является дальнейшее расширение сфер внедрения ЭВМ и, как следствие, переход от отдельных машин к их системам - вычислительным системам и комплексам разнообразных конфигураций с широким спектром функциональных возможностей и черт.

Более перспективные, создаваемые на базе персональных ЭВМ, территориально распределенные многомашинные вычислительные системы. Вычислительные сети - ориентируются не столько на вычислительную обработку информации, сколько на коммуникационные информационные сервисы: электронную почту, системы телеконференций и информационно-справочные системы. Специалисты считают, что в начале XXI в. в цивилизованных странах произойдет смена основной информационной среды.

В последние годы, при разработке новых ЭВМ большее внимание уделялось сверхмощным компьютерам - суперЭВМ и миниатюрным, и сверхминиатюрные ПК. Ведутся поисковые работы по созданию ЭВМ 6-го поколения, базирующихся на распределенной нейронной архитектуре, нейрокомпьютеров. В частности, в нейрокомпьютерах могут употребляться уже имеющиеся специализированные сетевые МП - транспьютеры - микропроцессоры сети со встроенными средствами связи.

Примерная характеристика компьютеров шестого поколения.

Интернет вещей из концепции превращается в цифрового монстра, наверное, в хорошем смысле этого слова.

Какие цифровые технологии сегодня в тренде? И почему успех компаний в будущем будет во многом зависть от способности интегрироваться в интернет вещей (IoT)?

IoT, Analytics, Edge, 5G в первой четверке

По мере того, как мы приближаемся к концу 2018 года, аналитики цифрового пространства отмечают, что человечество все глубже интегрируется в цифровое пространство. И хотя для все еще многих людей многие интернет технологии представляются чем-то из рода фантастики, недалеко то время, когда дома, машины, станки, бытовые приборы смогут общаться в интернете через своих интернет-агентов, заботясь о нашем благе — вовремя подать в дом тепло, воду, газ, вовремя заправить машину и отправить ее на техосмотр, вовремя привезти порошок для стирки белья и т.д.

Станки будут сами находить себе необходимые заказы и материалы для выполнения этих заказов, конвейерные заводы и цеха будут сами искать поставщиков и затем из поставленных комплектующих собирать машины, оборудование и всякую всячину. Интернет вещей, будучи еще пару лет назад всего лишь концепцией, сегодня уверенно обрастает плотью в виде появления умных домов, умных машин, умных приборов и т.д.

Какие же цифровые технологии сегодня претендуют на лидерство?

Вездесущий интернет вещей (IoT)

Интернет вещей IoT, о котором мы уже упомянули, заслуженно нашел свой путь к вершине. По оценкам Gartner, в 2017 году более 8,4 млрд. «вещей» находились в Интернете, что на 30% больше, чем год назад. В 2018 году эта тенденция сохраняется. И все-таки IoT — это только начало. Речь идет не столько о вещах, сколько о том, что мы делаем с этими вещами, когда они связаны и поставляют нам данные.

Три из основных тенденций, которые видятся экспертам — революция аналитики, краевые вычисления и обработка ячеек 5G, — все это обусловлено IoT в их основе. Фактически, IDC прогнозирует, что до 40% всех вычислений произойдет в ближайшие пару лет. Вот почему тенденции 1-4 все с IoT. Если говорить очень простым языком, то вещи сначала нужно оцифровать, чтобы они смогли войти в систему интернета вещей. Но вы же наверное понимаете, что интернет — это в сущности система цифр.

Аналитика от IoT

Если вы думаете, что основная функция IoT — обслуживать своих хозяев, то это не совсем так. Взаимодействуя между собой, они создают базу, которую затем анализируют.

Массовое количество информации, создаваемой IoT, имеет возможность революционизировать все: от производства и здравоохранения до функционирования целых городов, что позволяет им работать более эффективно и выгодно, чем когда-либо прежде. Одна из компаний, например, обнаружила, что она смогла снизить стоимость управления своим флотом из 180 000 грузовиков с 15 центов за милю до 3 центов. Такую же эффективность можно реализовать практически в каждой отрасли, от розничной торговли до городского планирования.

Технические гиганты, такие как Microsoft, IBM, SAS и SAP, все активно инвестируют в Google Analytics, в особенности в IoT Analytics, поскольку они видят силу этой комбинации в продвижении новых бизнес-идей в широком спектре отраслей и приложений.

На третьем месте Edge Computing

Если вы считаете, что уже достигли предела, когда дело доходит до использования цифровых технологий, то на самом деле вы еще ничего не видели. Просто, когда многие компании наконец начинают двигаться к облачным вычислениям, краевые вычисления, обусловленные огромным объемом и скоростью информации, созданной IoT, выпрыгивают на передний план бизнес-сцены. В тренде цифровых технологий в 2018 году уверенно проявляют себя краевые вычисления Edge Computing

Лидеры отрасли, такие как Cisco и HPE, сделали огромное количество аппаратных, программных и сервисных ставок для этого движения, на что следует смотреть, как на сильную проверку этой тенденции. Поскольку интеллектуальные беспилотные летательные аппараты, автономные транспортные средства и другие интеллектуальные устройства на базе AI стремятся к мгновенному подключению и передаче через IoT, вопрос отправки данных «полностью» в облако станет крайне нецелесообразным. Многие из этих устройств потребуют отклика и обработки в реальном времени, что делает краевые вычисления единственным жизнеспособным вариантом.

Для тех из вас, кто только что прыгнул в облачное поколение: не беспокойтесь. Хотя край будет оставаться подходящим для обработки данных в режиме реального времени, вероятно, что наиболее важные и релевантные данные по-прежнему будут обладать облачной областью. То есть краевые вычисления нужны для тех интернет приложений, где требуется мгновенное принятие решений.

Одной из технологий, которая предложена для мгновенного вычисления транзакций, не обращаясь к облачным хранилищам, является Блокчейн (о ней чуть дальше) — цепочка блоков, которая позволяется вычислять все транзакции в реальном времени. Транзакция — минимальная осмысленная операция.

Четверку лидеров замыкает 5G

Точно так же, как растущий объем данных, создаваемых IoT, заставит использовать краевые вычисления, он же заставит мобильные провайдеры двигаться быстрее, чем когда-либо, — к 5G. Уровень гиперсвязности, ожидаемый сегодня пользователями, оставляет мало места, чтобы не двигаться вперед по 5G-пути, но не слишком волнуйтесь. Переход на 5G не произойдет в одночасье. В лучшем случае на это уйдет года 2. Говорят, именно благодаря ему интернет вещей, беспилотные авто и виртуальная реальность перейдут со страниц технологических медиа в нашу повседневную жизнь.

Blockchain находит путь к славе

В то время как его более популярный кузен Биткойн продолжает сдувать аналитиков фондового рынка, Blockchain, наконец, может заявить, что нашел свое место в 2018 году. Gartner показывает, что по состоянию на февраль этого года блокчайн стал вторым самым лучшим поисковым термином на своем веб-сайте, увеличившись на 400% всего за 12 месяцев.

В то время как финансовая индустрия будет первой, кто начнет использовать этот удивительный инструмент, многие другие — от здравоохранения до развлечений и гостиничного сервиса — не будут далеко позади. Разумеется, переход к блочной цепи также не наступит в одночасье — только 20% торгового финансирования в глобальном масштабе будут использовать его к 2020 году. Но как только он найдет свои морские ноги — скорее всего, в этом году — буквально не будет возврата назад.

Искусственный интеллект по прежнему в десятке

Незаслуженно обойденный громкой славой AI (искусственный интеллект, ИИ) тем не менее продолжает активно развиваться и имеет много почитателей. На стороне бизнеса в искусственном интеллекте так много потенциала, как во всем: от обслуживания клиентов и робототехники до аналитики и маркетинга. Компании будут продолжать использовать ИИ, чтобы удивлять, подключаться и общаться со своими клиентами так, как они могут даже не оценить или понять.

Это включает в себя более быструю, дешевую и разумную автоматизацию всего: от электронной почты и создания контента до промышленного производства. Некоторые аналитики уверены, что ИИ еще себя не проявил.

Мы видели подобных IBM Watson, SAP Leonardo, Salesforce Einstein и других крупных компаний-разработчиков программного обеспечения, которые запустили внедренный AI прямо на свои платформы. Это признак того, что все самое главное в развитии искусственного интеллекта еще должно произойти.

Справочно:

Интернет вещей (англ. Internet of Things, IoT) - концепция вычислительной сети физических предметов («вещей»), оснащённых встроенными технологиями для взаимодействия друг с другом или с внешней средой, рассматривающая организацию таких сетей как явление, способное перестроить экономические и общественные процессы, исключающее из части действий и операций необходимость участия человека.

Концепция сформулирована в 1999 году. сетей.

В 2017 году термин «Интернет вещей» распространяется не только на киберфизические системы для «домашнего» применения, но и на промышленные объекты. Развитие концепции «Интеллектуальных зданий» получило название «Building Internet of Things»(BIoT, «Интернет вещей в здании»), развитие распределенной сетевой инфраструктуры в АСУ ТП привело к появлению «Industrial Internet of Things» (IIoT, «Индустриальный (промышленный) интернет вещей»)