Что такое VLAN? Смотреть что такое "VLAN" в других словарях


9) Маршрутизация: статическая и динамическая на примере RIP, OSPF и EIGRP.
10) Трансляция сетевых адресов: NAT и PAT.
11) Протоколы резервирования первого перехода: FHRP.
12) Безопасность компьютерных сетей и виртуальные частные сети: VPN.
13) Глобальные сети и используемые протоколы: PPP, HDLC, Frame Relay.
14) Введение в IPv6, конфигурация и маршрутизация.
15) Сетевое управление и мониторинг сети.

P.S. Возможно, со временем список дополнится.


В предыдущих статьях мы уже работали с многими сетевыми устройствами, поняли, чем они друг от друга отличаются и рассмотрели из чего состоят кадры, пакеты и прочие PDU. В принципе с этими знаниями можно организовать простейшую локальную сеть и работать в ней. Но мир не стоит на месте. Появляется все больше устройств, которые нагружают сеть или что еще хуже - создают угрозу в безопасности. А, как правило, «опасность» появляется раньше «безопасности». Сейчас я на самом простом примере покажу это.

Мы пока не будем затрагивать маршрутизаторы и разные подсети. Допустим все узлы находятся в одной подсети.

Сразу приведу список IP-адресов:

  1. PC1 – 192.168.1.2/24
  2. PC2 – 192.168.1.3/24
  3. PC3 – 192.168.1.4/24
  4. PC4 – 192.168.1.5/24
  5. PC5 – 192.168.1.6/24
  6. PC6 – 192.168.1.7/24
У нас 3 отдела: дирекция, бухгалтерия, отдел кадров. У каждого отдела свой коммутатор и соединены они через центральный верхний. И вот PC1 отправляет ping на компьютер PC2.






Кто хочет увидеть это в виде анимации, открывайте спойлер (там показан ping от PC1 до PC5).

Работа сети в одном широковещательном домене


Красиво да? Мы в прошлых статьях уже не раз говорили о работе протокола ARP, но это было еще в прошлом году, поэтому вкратце объясню. Так как PC1 не знает MAC-адрес (или адрес канального уровня) PC2, то он отправляет в разведку ARP, чтобы тот ему сообщил. Он приходит на коммутатор, откуда ретранслируется на все активные порты, то есть к PC2 и на центральный коммутатор. Из центрального коммутатора вылетит на соседние коммутаторы и так далее, пока не дойдет до всех. Вот такой не маленький трафик вызвало одно ARP-сообщение. Его получили все участники сети. Большой и не нужный трафик - это первая проблема. Вторая проблема - это безопасность. Думаю, заметили, что сообщение дошло даже до бухгалтерии, компьютеры которой вообще не участвовали в этом. Любой злоумышленник, подключившись к любому из коммутаторов, будет иметь доступ ко всей сети. В принципе сети раньше так и работали. Компьютеры находились в одной канальной среде и разделялись только при помощи маршрутизаторов. Но время шло и нужно было решать эту проблему на канальном уровне. Cisco, как пионер, придумала свой протокол, который тегировал кадры и определял принадлежность к определенной канальной среде. Назывался он ISL (Inter-Switch Link) . Идея эта понравилась всем и IEEE решили разработать аналогичный открытый стандарт. Стандарт получил название 802.1q . Получил он огромное распространение и Cisco решила тоже перейти на него.
И вот как раз технология VLAN основывается на работе протокола 802.1q. Давайте уже начнем говорить про нее.

В 3-ей части я показал, как выглядит ethernet-кадр. Посмотрите на него и освежите в памяти. Вот так выглядит не тегированный кадр.

Теперь взглянем на тегированный.

Как видим, отличие в том, что появляется некий Тег . Это то, что нам и интересно. Копнем глубже. Состоит он из 4-х частей.

1) TPID (англ. Tag Protocol ID) или Идентификатор тегированного протокола - состоит из 2-х байт и для VLAN всегда равен 0x8100.
2) PCP (англ. Priority Code Point) или значение приоритета - состоит из 3-х бит. Используется для приоритезации трафика. Крутые и бородатые сисадмины знают, как правильно им управлять и оперирует им, когда в сети гуляет разный трафик (голос, видео, данные и т.д.)
3) CFI (англ. Canonical Format Indicator) или индикатор каноничного формата - простое поле, состоящее из одного бита. Если стоит 0, то это стандартный формат MAC-адреса.
4) VID (англ. VLAN ID) или идентификатор VLAN - состоит из 12 бит и показывает, в каком VLAN находится кадр.

Хочу заострить внимание на том, что тегирование кадров осуществляется между сетевыми устройствами (коммутаторы, маршрутизаторы и т.д.), а между конечным узлом (компьютер, ноутбук) и сетевым устройством кадры не тегируются. Поэтому порт сетевого устройства может находиться в 2-х состояниях: access или trunk .

  • Access port или порт доступа - порт, находящийся в определенном VLAN и передающий не тегированные кадры. Как правило, это порт, смотрящий на пользовательское устройство.
  • Trunk port или магистральный порт - порт, передающий тегированный трафик. Как правило, этот порт поднимается между сетевыми устройствами.
Сейчас я покажу это на практике. Открываю ту же лабу. Картинку повторять не буду, а сразу открою коммутатор и посмотрю, что у него с VLAN.

Набираю команду show vlan .


Выстраиваются несколько таблиц. Нам по сути важна только самая первая. Теперь покажу как ее читать.

1 столбец - это номер VLAN. Здесь изначально присутствует номер 1 - это стандартный VLAN, который изначально есть на каждом коммутаторе. Он выполняет еще одну функцию, о которой чуть ниже напишу. Также присутствуют зарезервированные с 1002-1005. Это для других канальных сред, которые вряд ли сейчас используются. Удалить их тоже нельзя.

Switch(config)#no vlan 1005 Default VLAN 1005 may not be deleted.
При удалении Cisco выводит сообщение, что этот VLAN удалить нельзя. Поэтому живем и эти 4 VLANа не трогаем.

2 столбец - это имя VLAN. При создании VLAN, вы можете на свое усмотрение придумывать им осмысленные имена, чтобы потом их идентифицировать. Тут уже есть default, fddi-default, token-ring-default, fddinet-default, trnet-default.

3 столбец - статус. Здесь показывается в каком состоянии находится VLAN. На данный момент VLAN 1 или default в состоянии active, а 4 следующих act/unsup (хоть и активные, но не поддерживаются).

4 столбец - порты. Здесь показано к каким VLAN-ам принадлежат порты. Сейчас, когда мы еще ничего не трогали, они находятся в default.

Приступаем к настройке коммутаторов. Правилом хорошего тона будет дать коммутаторам осмысленные имена. Чем и займемся. Привожу команду.

Switch(config)#hostname CentrSW CentrSW(config)#
Остальные настраиваются аналогично, поэтому покажу обновленную схему топологии.


Начнем настройку с коммутатора SW1. Для начала создадим VLAN на коммутаторе.

SW1(config)#vlan 2 - создаем VLAN 2 (VLAN 1 по умолчанию зарезервирован, поэтому берем следующий). SW1(config-vlan)#name Dir-ya - попадаем в настройки VLAN и задаем ему имя.
VLAN создан. Теперь переходим к портам. Интерфейс FastEthernet0/1 смотрит на PC1, а FastEthernet0/2 на PC2. Как говорилось ранее, кадры между ними должны передаваться не тегированными, поэтому переведем их в состояние Access.

SW1(config)#interface fastEthernet 0/1 - переходим к настройке 1-ого порта. SW1(config-if)#switchport mode access - переводим порт в режим access. SW1(config-if)#switchport access vlan 2 - закрепляем за портом 2-ой VLAN. SW1(config)#interface fastEthernet 0/2 - переходим к настройке 2-ого порта. SW1(config-if)#switchport mode access - переводим порт в режим access. SW1(config-if)#switchport access vlan 2 - закрепляем за портом 2-ой VLAN.
Так как оба порта закрепляются под одинаковым VLAN-ом, то их еще можно было настроить группой.

SW1(config)#interface range fastEthernet 0/1-2 - то есть выбираем пул и далее настройка аналогичная. SW1(config-if-range)#switchport mode access SW1(config-if-range)#switchport access vlan 2
Настроили access порты. Теперь настроим trunk между SW1 и CentrSW.

SW1(config)#interface fastEthernet 0/24 - переходим к настройке 24-ого порта. SW1(config-if)#switchport mode trunk - переводим порт в режим trunk. %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/24, changed state to down %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/24, changed state to up
Сразу видим, что порт перенастроился. В принципе для работы этого достаточно. Но с точки зрения безопасности разрешать для передачи нужно только те VLAN, которые действительно нужны. Приступим.

SW1(config-if)#switchport trunk allowed vlan 2 - разрешаем передавать только 2-ой VLAN.
Без этой команды передаваться будут все имеющиеся VLAN. Посмотрим, как изменилась таблица командой show vlan .


Появился 2-ой VLAN с именем Dir-ya и видим принадлежащие ему порты fa0/1 и fa0/2.

Чтобы вывести только верхнюю таблицу, можно воспользоваться командой show vlan brief .


Можно еще укоротить вывод, если указать определенный ID VLANа.


Или его имя.


Вся информациях о VLAN хранится в flash памяти в файле vlan.dat.


Как вы заметили, ни в одной из команд, нет информации о trunk. Ее можно посмотреть другой командой show interfaces trunk .


Здесь есть информация и о trunk портах, и о том какие VLAN они передают. Еще тут есть столбец Native vlan . Это как раз тот трафик, который не должен тегироваться. Если на коммутатор приходит не тегированный кадр, то он автоматически причисляется к Native Vlan (по умолчанию и в нашем случае это VLAN 1). Native VLAN можно, а многие говорят, что нужно менять в целях безопасности. Для этого в режиме настройки транкового порта нужно применить команду - switchport trunk native vlan X , где X - номер присваиваемого VLAN. В этой топологии мы менять не будем, но знать, как это делать полезно.

Осталось настроить остальные устройства.

CentrSW:
Центральный коммутатор является связующим звеном, а значит он должен знать обо всех VLAN-ах. Поэтому сначала создаем их, а потом переводим все интерфейсы в транковый режим.

CentrSW(config)#vlan 2 CentrSW(config-vlan)# name Dir-ya CentrSW(config)#vlan 3 CentrSW(config-vlan)# name buhgalter CentrSW(config)#vlan 4 CentrSW(config-vlan)# name otdel-kadrov CentrSW(config)#interface range fastEthernet 0/1-3 CentrSW(config-if-range)#switchport mode trunk
Не забываем сохранять конфиг. Команда copy running-config startup-config.

SW2(config)#vlan 3 SW2(config-vlan)#name buhgalter SW2(config)#interface range fastEthernet 0/1-2 SW2(config-if-range)#switchport mode access SW2(config-if-range)#switchport access vlan 3 SW2(config)#interface fastEthernet 0/24 SW2(config-if)#switchport mode trunk SW2(config-if)#switchport trunk allowed vlan 3
SW3:

SW3(config)#vlan 4 SW3(config-vlan)#name otdel kadrov SW3(config)#interface range fastEthernet 0/1-2 SW3(config-if-range)#switchport mode access SW3(config-if-range)#switchport access vlan 4 SW3(config)#interface fastEthernet 0/24 SW3(config-if)#switchport mode trunk SW3(config-if)#switchport trunk allowed vlan 4
Обратите внимание на то, что мы подняли и настроили VLAN, но адресацию узлов оставили такой же. То есть, фактически все узлы в одной подсети, но разделены VLAN-ами. Так делать нельзя. Каждому VLAN надо выделять отдельную подсеть. Я это сделал исключительно в учебных целях. Если бы каждый отдел сидел в своей подсети, то они бы априори были ограничены, так как коммутатор не умеет маршрутизировать трафик из одной подсети в другую (плюс это уже ограничение на сетевом уровне). А нам нужно ограничить отделы на канальном уровне.
Снова отправляю ping с PC1 к PC3.

Идет в ход ARP, который нам и нужен сейчас. Откроем его.

Пока что ничего нового. ARP инкапсулирован в ethernet.

Кадр прилетает на коммутатор и тегируется. Теперь там не обычный ethernet, а 802.1q. Добавились поля, о которых я писал ранее. Это TPID , который равен 8100 и показывающий, что это 802.1q. И TCI , которое объединяет 3 поля PCP, CFI и VID . Число, которое в этом поле - это номер VLAN. Двигаемся дальше.


После тега он отправляет кадр на PC2 (т.к. он в том же VLAN) и на центральный коммутатор по транковому порту.


Так как жестко не было прописано какие типы VLAN пропускать по каким портам, то он отправит на оба коммутатора. И вот здесь коммутаторы, увидев номер VLAN, понимают, что устройств с таким VLAN-ом у них нет и смело его отбрасывают.


PC1 ожидает ответ, который так и не приходит. Можно под спойлером посмотреть в виде анимации.

Анимация


Теперь следующая ситуация. В состав дирекции нанимают еще одного человека, но в кабинете дирекции нет места и на время просят разместить человека в отделе бухгалтерии. Решаем эту проблему.


Подключили компьютер к порту FastEthernet 0/3 коммутатора и присвою IP-адрес 192.168.1.8/24.
Теперь настрою коммутатор SW2 . Так как компьютер должен находиться во 2-ом VLAN, о котором коммутатор не знает, то создам его на коммутаторе.

SW2(config)#vlan 2 SW2(config-vlan)#name Dir-ya
Дальше настраиваем порт FastEthernet 0/3, который смотрит на PC7.

SW2(config)#interface fastEthernet 0/3 SW2(config-if)#switchport mode access SW2(config-if)#switchport access vlan 2
И последнее - настроить транковый порт.

SW2(config)#interface fastEthernet 0/24 SW2(config-if)#switchport trunk allowed vlan add 2 - обратите внимание на эту команду. А именно на ключевое слово "add". Если не дописать это слово, то вы сотрете все остальные разрешенные к передаче VLAN на этом порту. Поэтому если у вас уже был поднят транк на порту и передавались другие VLAN, то добавлять надо именно так.
Чтобы кадры ходили красиво, подкорректирую центральный коммутатор CentrSW.

CentrSW(config)#interface fastEthernet 0/1 CentrSW(config-if)#switchport trunk allowed vlan 2 CentrSW(config)#interface fastEthernet 0/2 CentrSW(config-if)#switchport trunk allowed vlan 2,3 CentrSW(config)#interface fastEthernet 0/3 CentrSW(config-if)#switchport trunk allowed vlan 4
Время проверки. Отправляю ping с PC1 на PC7.



Пока что весь путь аналогичен предыдущему. Но вот с этого момента (с картинки ниже) центральный коммутатор примет другое решение. Он получает кадр и видит, что тот протегирован 2-ым VLAN-ом. Значит отправлять его надо только туда, где это разрешено, то есть на порт fa0/2.


И вот он приходит на SW2. Открываем и видим, что он еще тегированный. Но следующим узлом стоит компьютер и тег надо снимать. Нажимаем на «Outbound PDU Details», чтобы посмотреть в каком виде кадр вылетит из коммутатора.


И действительно. Коммутатор отправит кадр в «чистом» виде, то есть без тегов.


Доходит ARP до PC7. Открываем его и убеждаемся, что кадр не тегированный PC7 узнал себя и отправляет ответ.


Открываем кадр на коммутаторе и видим, что на отправку он уйдет тегированным. Дальше кадр будет путешествовать тем же путем, что и пришел.



ARP доходит до PC1, о чем свидетельствует галочка на конверте. Теперь ему известен MAC-адрес и он пускает в ход ICMP.


Открываем пакет на коммутаторе и наблюдаем такую же картину. На канальном уровне кадр тегируется коммутатором. Так будет с каждым сообщением.




Видим, что пакет успешно доходит до PC7. Обратный путь я показывать не буду, так как он аналогичен. Если кому интересно, можно весь путь увидеть на анимации под спойлером ниже. А если охота самому поковырять эту топологию, прикладываю ссылку на лабораторку.

Логика работы VLAN



Вот в принципе самое популярное применение VLAN-ов. Независимо от физического расположения, можно логически объединять узлы в группы, там самым изолируя их от других. Очень удобно, когда сотрудники физически работают в разных местах, но должны быть объединены. И конечно с точки зрения безопасности VLAN не заменимы. Главное, чтобы к сетевым устройствам имели доступ ограниченный круг лиц, но это уже отдельная тема.
Добились ограничения на канальном уровне. Трафик теперь не гуляет где попало, а ходит строго по назначению. Но теперь встает вопрос в том, что отделам между собой нужно общаться. А так как они в разных канальных средах, то в дело вступает маршрутизация. Но перед началом, приведем топологию в порядок. Самое первое к чему приложим руку - это адресация узлов. Повторюсь, что каждый отдел должен находиться в своей подсети. Итого получаем:
  • Дирекция - 192.168.1.0/24
  • Бухгалтерия - 192.168.2.0/24
  • Отдел кадров - 192.168.3.0/24


Раз подсети определены, то сразу адресуем узлы.
  1. PC1:
    IP: 192.168.1.2
    Маска: 255.255.255.0 или /24
    Шлюз: 192.168.1.1
  2. PC2:
    IP: 192.168.1.3
    Маска: 255.255.255.0 или /24
    Шлюз: 192.168.1.1
  3. PC3:
    IP: 192.168.2.2
    Маска: 255.255.255.0 или /24
    Шлюз: 192.168.2.1
  4. PC4:
    IP: 192.168.2.3
    Маска: 255.255.255.0 или /24
    Шлюз: 192.168.2.1
  5. PC5:
    IP: 192.168.3.2
    Маска: 255.255.255.0 или /24
    Шлюз: 192.168.3.1
  6. PC6:
    IP: 192.168.3.3
    Маска: 255.255.255.0 или /24
    Шлюз: 192.168.3.1
  7. PC7:
    IP: 192.168.1.4
    Маска: 255.255.255.0 или /24
    Шлюз: 192.168.1.1
Теперь про изменения в топологии. Видим, что добавился маршрутизатор. Он как раз и будет перекидывать трафик с одного VLAN на другой (иными словами маршрутизировать). Изначально соединения между ним и коммутатором нет, так как интерфейсы выключены.
У узлов добавился такой параметр, как адрес шлюза. Этот адрес они используют, когда надо отправить сообщение узлу, находящемуся в другой подсети. Соответственно у каждой подсети свой шлюз.

Осталось настроить маршрутизатор, и я открываю его CLI. По традиции дам осмысленное имя.

Router(config)#hostname Gateway Gateway(config)#
Далее переходим к настройке интерфейсов.

Gateway(config)#interface fastEthernet 0/0 - переходим к требуемому интерфейсу. Gateway(config-if)#no shutdown - включаем его. %LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
Теперь внимание! Мы включили интерфейс, но не повесили на него IP-адрес. Дело в том, что от физического интерфейса (fastethernet 0/0) нужен только линк или канал. Роль шлюзов будут выполнять виртуальные интерфейсы или сабинтерфейсы (англ. subinterface). На данный момент 3 типа VLAN. Значит и сабинтерфейсов будет 3. Приступаем к настройке.

Gateway(config)#interface fastEthernet 0/0.2 Gateway(config-if)#encapsulation dot1Q 2 Gateway(config-if)#ip address 192.168.1.1 255.255.255.0 Gateway(config)#interface fastEthernet 0/0.3 Gateway(config-if)#encapsulation dot1Q 3 Gateway(config-if)#ip address 192.168.2.1 255.255.255.0 Gateway(config)#interface fastEthernet 0/0.4 Gateway(config-if)#encapsulation dot1Q 4 Gateway(config-if)#ip address 192.168.3.1 255.255.255.0
Маршрутизатор настроен. Переходим к центральному коммутатору и настроим на нем транковый порт, чтобы он пропускал тегированные кадры на маршрутизатор.

CentrSW(config)#interface fastEthernet 0/24 CentrSW(config-if)#switchport mode trunk CentrSW(config-if)#switchport trunk allowed vlan 2,3,4
Конфигурация закончена и переходим к практике. Отправляю ping с PC1 на PC6 (то есть на 192.168.3.3).


PC1 понятия не имеет, кто такой PC6 или 192.168.3.3, но знает, что они находятся в разных подсетях (как он это понимает описано в предыдущей статье). Поэтому он отправит сообщение через основной шлюз, адрес которого указан в его настройках. И хоть PC1 знает IP-адрес основного шлюза, для полного счастья не хватает MAC-адреса. И он пускает в ход ARP.




Обратите внимание. Как только кадр прибывает на CentrSW, коммутатор не рассылает его кому попало. Он рассылает только на те порты, где разрешен пропуск 2-го VLAN. То есть на маршрутизатор и на SW2 (там есть пользователь, сидящий во 2-ом VLAN).


Маршрутизатор узнает себя и отправляет ответ (показан стрелочкой). И обратите внимание на нижний кадр. Когда SW2 получил ARP от центрального коммутатора, он аналогично не стал рассылать его на все компьютеры, а отправил только PC7, который сидит во 2-ом VLAN. Но PC7 его отбрасывает, так как он не для него. Смотрим дальше.



ARP дошел до PC1. Теперь ему все известно и можно отправлять ICMP. Еще раз обращу внимание на то, что в качестве MAC-адреса назначения (канальный уровень), будет адрес маршрутизатора, а в качестве IP-адреса назначения (сетевой уровень), адрес PC6.




Доходит ICMP до маршрутизатора. Он смотрит в свою таблицу и понимает, что не знает никого под адресом 192.168.3.3. Отбрасывает прибывший ICMP и пускает разведать ARP.





PC6 узнает себя и отправляет ответ.




Доходит до маршрутизатора ответ и он добавляет запись в своей таблице. Посмотреть таблицу ARP можно командой show arp .
Двигаемся дальше. PC1 недоволен, что ему никто не отвечает и отправляет следующее ICMP-сообщение.








На этот раз ICMP доходит без проблем. Обратно он проследует тем же маршрутом. Я лишь покажу конечный результат.


Первый пакет затерялся (в результате работы ARP), а второй дошел без проблем.
Кому интересно увидеть в анимации, добро пожаловать под спойлер.

InterVLAN Routing



Итак. Мы добились того, что если узлы находятся в одной подсети и в одном VLAN, то ходить они будут напрямую через коммутаторы. В случае, когда нужно передать сообщение в другую подсеть и VLAN, то передавать будут через роутер Gateway, который осуществляет «межвлановую» маршрутизацию. Данная топология получила название «router on a stick» или «роутер на палочке» . Как вы поняли она очень удобна. Мы создали 3 виртуальных интерфейса и по одному проводу гоняли разные тегированные кадры. Без использования сабинтерфейсов и VLAN-ов, пришлось бы для каждой подсети задействовать отдельный физический интерфейс, что совсем не выгодно.

Кстати очень хорошо этот вопрос разобран в этом видео (видео идет около 3-х часов, поэтому ссылка с привязкой именно к тому моменту времени). Если после прочтения и просмотра видео захочется добить все собственными руками, прикладываю ссылку на скачивание.

Разобрались с VLAN-ами и переходим к одному из протоколов, работающего с ним.
DTP (англ. Dynamic Trunking Protocol) или на русском динамический транковый протокол - проприетарный протокол компании Cisco, служащий для реализации trunk режима между коммутаторами. Хотя в зависимости от состояния, они могут согласоваться и в режим access.

В DTP есть 4 режима: Dynamic auto, Dynamic desirable, Trunk, Access. Рассмотрим как они согласуются.

Режимы Dynamic auto Dynamic desirable Trunk Access
Dynamic auto Access Trunk Trunk Access
Dynamic desirable Trunk Trunk Trunk Access
Trunk Trunk Trunk Trunk Отсутствие соединения
Access Access Access Отсутствие соединения Access

То есть левая колонка это 1-ое устройство, а верхняя строка 2-ое устройство. По-умолчанию коммутаторы находятся в режиме «dynamic auto». Если посмотреть таблицу сопоставления, то два коммутатора в режиме «dynamic auto» согласуются в режим «access». Давайте это и проверим. Создаю я новую лабораторную работу и добавлю 2 коммутатора.


Соединять их пока не буду. Мне надо убедиться, что оба коммутатора в режиме «dynamic auto». Проверять буду командой show interfaces switchport .


Результат этой команды очень большой, поэтому я его обрезал и выделил интересующие пункты. Начнем с Administrative Mode . Эта строка показывает, в каком из 4-режимов работает данный порт на коммутаторе. Убеждаемся, что на обоих коммутаторах порты в режиме «Dynamic auto». А строка Operational Mode показывает, в каком режиме работы они согласовали работу. Мы пока их не соединяли, поэтому они в состоянии «down».

Сразу дам вам хороший совет. При тестировании какого либо протокола, пользуйтесь фильтрами. Отключайте показ работы всех ненужных вам протоколов.

Перевожу CPT в режим simulation и отфильтрую все протоколы, кроме DTP.



Думаю здесь все понятно. Соединяю коммутаторы кабелем и, при поднятии линков, один из коммутаторов генерирует DTP-сообщение.


Открываю и вижу, что это DTP инкапсулированный в Ethernet-кадр. Отправляет он его на мультикастовый адрес «0100.0ccc.cccc», который относится к протоколам DTP, VTP, CDP.
И обращу внимание на 2 поля в заголовке DTP.

1) DTP Type - сюда отправляющий вставляет предложение. То есть в какой режим он хочет согласоваться. В нашем случае он предлагает согласовать «access».
2) Neighbor MAC-address - в это поле он записывает MAC-адрес своего порта.

Отправляет он и ждет реакции от соседа.


Доходит до SW1 сообщение и он генерирует ответный. Где также согласует режим «access», вставляет свой MAC-адрес и отправляет в путь до SW2.


Успешно доходит DTP. По идее они должны были согласоваться в режиме «access». Проверю.


Как и предполагалось, согласовались они в режим «access».
Кто то говорит, что технология удобная и пользуется ею. Но я крайне не рекомендую использовать этот протокол в своей сети. Рекомендую это не только я, и сейчас объясню почему. Смысл в том, что этот протокол открывает большую дыру в безопасности. Я открою лабораторку, в которой разбиралась работа «Router on a stick» и добавлю туда еще один коммутатор.


Теперь зайду в настройки нового коммутатора и жестко пропишу на порту работу в режиме trunk.

New_SW(config)#interface fastEthernet 0/1 New_SW(config-if)#switchport mode trunk
Соединяю их и смотрю, как они согласовались.


Все верно. Режимы «dynamic auto» и «trunk» согласуются в режим trunk . Теперь ждем, когда кто- то начнет проявлять активность. Допустим PC1 решил кому то отправить сообщение. Формирует ARP и выпускает в сеть.


Пропустим его путь до того момента, когда он попадет на SW2.


И вот самое интересное.


Он отправляет его на вновь подключенный коммутатор. Объясняю, что произошло. Как только мы согласовали с ним trunk, он начинает отправлять ему все пришедшие кадры. Хоть на схеме и показано, что коммутатор отбрасывает кадры, это ничего не значит. К коммутатору или вместо коммутатора можно подключить любое перехватывающее устройство (sniffer) и спокойно просматривать, что творится в сети. Вроде перехватил он безобидный ARP. Но если взглянуть глубже, то можно увидеть, что уже известен MAC-адрес «0000.0C1C.05DD» и IP-адрес «192.168.1.2». То есть PC1 не думая выдал себя. Теперь злоумышленник знает о таком компьютере. Вдобавок он знает, что он сидит во 2-ом VLAN. Дальше он может натворить многого. Самое банальное - это подменить свой MAC-адрес, IP-адрес, согласоваться быстро в Access и и выдавать себя за PC1. Но самое интересное. Ведь сразу можно этого не понять. Обычно, когда мы прописываем режим работы порта, он сразу отображается в конфигурации. Ввожу show running-config .


Но здесь настройки порта пустые. Ввожу show interfaces switchport и проматываю до fa0/4.


А вот здесь видим, что согласован trunk. Не всегда show running-config дает исчерпывающую информацию. Поэтому запоминайте и другие команды.

Думаю понятно почему нельзя доверять этому протоколу. Он вроде облегчает жизнь, но в то же время может создать огромную проблему. Поэтому полагайтесь на ручной метод. При настройке сразу же обозначьте себе какие порты будут работать в режиме trunk, а какие в access. И самое главное - всегда отключайте согласование. Чтобы коммутаторы не пытались ни с кем согласоваться. Делается это командой «switchport nonegotiate».

Переходим к следующему протоколу.

VTP (англ. VLAN Trunking Protocol) - проприетарный протокол компании Cisco, служащий для обмена информацией о VLAN-ах.

Представьте ситуацию, что у вас 40 коммутаторов и 70 VLAN-ов. По хорошему нужно вручную на каждом коммутаторе их создать и прописать на каких trunk-ых портах разрешать передачу. Дело это муторное и долгое. Поэтому эту задачу может взвалить на себя VTP. Вы создаете VLAN на одном коммутаторе, а все остальные синхронизируются с его базой. Взгляните на следующую топологию.


Здесь присутствуют 4 коммутатора. Один из них является VTP-сервером, а 3 остальных клиентами. Те VLAN, которые будут созданы на сервере, автоматически синхронизируются на клиентах. Объясню как работает VTP и что он умеет.

Итак. VTP может создавать, изменять и удалять VLAN. Каждое такое действие влечет к тому, что увеличивается номер ревизии (каждое действие увеличивает номер на +1). После он рассылает объявления, где указан номер ревизии. Клиенты, получившие это объявление, сравнивают свой номер ревизии с пришедшим. И если пришедший номер выше, они синхронизируют свою базу с ней. В противном случае объявление игнорируется.

Но это еще не все. У VTP есть роли. По-умолчанию все коммутаторы работают в роли сервера. Расскажу про них.

  1. VTP Server . Умеет все. То есть создает, изменяет, удаляет VLAN. Если получает объявление, в которых ревизия старше его, то синхронизируется. Постоянно рассылает объявления и ретранслирует от соседей.
  2. VTP Client - Эта роль уже ограничена. Создавать, изменять и удалять VLAN нельзя. Все VLAN получает и синхронизирует от сервера. Периодически сообщает соседям о своей базе VLAN-ов.
  3. VTP Transparent - эта такая независимая роль. Может создавать, изменять и удалять VLAN только в своей базе. Никому ничего не навязывает и ни от кого не принимает. Если получает какое то объявление, передает дальше, но со своей базой не синхронизирует. Если в предыдущих ролях, при каждом изменении увеличивался номер ревизии, то в этом режиме номер ревизии всегда равен 0.
Это все, что касается VTP версии 2. В VTP 3-ей версии добавилась еще одна роль - VTP Off . Он не передает никакие объявления. В остальном работа аналогична режиму Transparent .

Начитались теории и переходим к практике. Проверим, что центральный коммутатор в режиме Server. Вводим команду show vtp status .


Видим, что VTP Operating Mode: Server. Также можно заметить, что версия VTP 2-ая. К сожалению, в CPT 3-ья версия не поддерживается. Версия ревизии нулевая.
Теперь настроим нижние коммутаторы.

SW1(config)#vtp mode client Setting device to VTP CLIENT mode.
Видим сообщение, что устройство перешло в клиентский режим. Остальные настраиваются точно также.

Чтобы устройства смогли обмениваться объявлениями, они должны находиться в одном домене. Причем тут есть особенность. Если устройство (в режиме Server или Client) не состоит ни в одном домене, то при первом полученном объявлении, перейдет в объявленный домен. Если же клиент состоит в каком то домене, то принимать объявления от других доменов не будет. Откроем SW1 и убедимся, что он не состоит ни в одном домене.


Убеждаемся, что тут пусто.

Теперь переходим центральному коммутатору и переведем его в домен.

CentrSW(config)#vtp domain cisadmin.ru Changing VTP domain name from NULL to cisadmin.ru
Видим сообщение, что он перевелся в домен cisadmin.ru.
Проверим статус.


И действительно. Имя домена изменилось. Обратите внимание, что номер ревизии пока что нулевой. Он изменится, как только мы создадим на нем VLAN. Но перед созданием надо перевести симулятор в режим simulation, чтобы посмотреть как он сгенерирует объявления. Создаем 20-ый VLAN и видим следующую картинку.


Как только создан VLAN и увеличился номер ревизии, сервер генерирует объявления. У него их два. Сначала откроем тот, что левее. Это объявление называется «Summary Advertisement» или на русском «сводное объявление». Это объявление генерируется коммутатором раз в 5 минут, где он рассказывает о имени домена и текущей ревизии. Смотрим как выглядит.


В Ethernet-кадре обратите внимание на Destination MAC-адрес. Он такой же, как и выше, когда генерировался DTP. То есть, в нашем случае на него отреагируют только те, у кого запущен VTP. Теперь посмотрим на следующее поле.


Здесь как раз вся информация. Пройдусь по самым важным полям.
  • Management Domain Name - имя самого домена (в данном случае cisadmin.ru).
  • Updater Identity - идентификатор того, кто обновляет. Здесь, как правило, записывается IP-адрес. Но так как адрес коммутатору не присваивали, то поле пустое
  • Update Timestamp - время обновления. Время на коммутаторе не менялось, поэтому там стоит заводское.
  • MD5 Digest - хеш MD5. Оно используется для проверки полномочий. То есть, если на VTP стоит пароль. Мы пароль не меняли, поэтому хэш по-умолчанию.
Теперь посмотрим на следующее генерируемое сообщение (то, что справа). Оно называется «Subset Advertisement» или «подробное объявление». Это такая подробная информация о каждом передаваемом VLAN.
Думаю здесь понятно. Отдельный заголовок для каждого типа VLAN. Список настолько длинный, что не поместился в экран. Но они точно такие, за исключением названий. Заморачивать голову, что означает каждый код не буду. Да и в CPT они тут больше условность.
Смотрим, что происходит дальше.


Получают клиенты объявления. Видят, что номер ревизии выше, чем у них и синхронизируют базу. И отправляют сообщение серверу о том, что база VLAN-ов изменилась.


Принцип работы протокола VTP



Вот так в принципе работает протокол VTP. Но у него есть очень большие минусы. И минусы эти в плане безопасности. Объясню на примере этой же лабораторки. У нас есть центральный коммутатор, на котором создаются VLAN, а потом по мультикасту он их синхронизирует со всеми коммутаторами. В нашем случае он рассказывает про VLAN 20. Предлагаю еще раз глянуть на его конфигурацию.

Обратите внимание. До сервера доходит VTP-сообщение, где номер ревизии выше, чем у него. Он понимает, что сеть изменилась и надо под нее подстроиться. Проверим конфигурацию.


Конфигурация центрального сервера изменилась и теперь он будет вещать именно ее.
А теперь представьте, что у нас не один VLAN, а сотни. Вот таким простым способом можно положить сеть. Конечно домен может быть запаролен и злоумышленнику будет тяжелее нанести вред. А представьте ситуацию, что у вас сломался коммутатор и срочно надо его заменить. Вы или ваш коллега бежите на склад за старым коммутатором и забываете проверить номер ревизии. Он оказывается выше чем у остальных. Что произойдет дальше, вы уже видели. Поэтому я рекомендую не использовать этот протокол. Особенно в больших корпоративных сетях. Если используете VTP 3-ей версии, то смело переводите коммутаторы в режим «Off». Если же используется 2-ая версия, то переводите в режим «Transparent». Добавить метки

И коммутаторах, позволяющая на одном физическом сетевом интерфейсе (Ethernet, Wi-Fi интерфейсе) создать несколько виртуальных локальных сетей. VLAN используют для создания логической топологии сети, которая никак не зависит от физической топологии.

Примеры использования VLAN

    Объединение в единую сеть компьютеров, подключенных к разным коммутаторам .
    Допустим, у вас есть компьютеры, которые подключены к разным свитчам, но их нужно объединить в одну сеть. Одни компьютеры мы объединим в виртуальную локальную сеть VLAN 1, а другие — в сеть VLAN 2. Благодаря функции VLAN компьютеры в каждой виртуальной сети будут работать, словно подключены к одному и тому же свитчу. Компьютеры из разных виртуальных сетей VLAN 1 и VLAN 2 будут невидимы друг для друга.

    Разделение в разные подсети компьютеров, подключенных к одному коммутатору .
    На рисунке компьютеры физически подключены к одному свитчу, но разделены в разные виртуальные сети VLAN 1 и VLAN 2. Компьютеры из разных виртуальных подсетей будут невидимы друг для друга.

    Разделение гостевой Wi-Fi сети и Wi-Fi сети предприятия .
    На рисунке к роутеру подключена физически одна Wi-Fi точка доступа . На точке созданы две виртуальные Wi-Fi точки с названиями HotSpot и Office. К HotSpot будут подключаться по Wi-Fi гостевые ноутбуки для доступа к интернету, а к Office — ноутбуки предприятия. В целях безопасности необходимо, чтобы гостевые ноутбуки не имели доступ к сети предприятия. Для этого компьютеры предприятия и виртуальная Wi-Fi точка Office объединены в виртуальную локальную сеть VLAN 1, а гостевые ноутбуки будут находиться в виртуальной сети VLAN 2. Гостевые ноутбуки из сети VLAN 2 не будут иметь доступ к сети предприятия VLAN 1.

Достоинства использования VLAN

    Гибкое разделение устройств на группы
    Как правило, одному VLAN соответствует одна подсеть. Компьютеры, находящиеся в разных VLAN, будут изолированы друг от друга. Также можно объединить в одну виртуальную сеть компьютеры, подключенные к разным коммутаторам.

    Уменьшение широковещательного трафика в сети
    Каждый VLAN представляет отдельный широковещательный домен. Широковещательный трафик не будет транслироваться между разными VLAN. Если на разных коммутаторах настроить один и тот же VLAN, то порты разных коммутаторов будут образовывать один широковещательный домен.

    Увеличение безопасности и управляемости сети
    В сети, разбитой на виртуальные подсети, удобно применять политики и правила безопасности для каждого VLAN. Политика будет применена к целой подсети, а не к отдельному устройству.

    Уменьшение количества оборудования и сетевого кабеля
    Для создания новой виртуальной локальной сети не требуется покупка коммутатора и прокладка сетевого кабеля. Однако вы должны использовать более дорогие управляемые коммутаторы с поддержкой VLAN.

К сожалению, многие современные предприятия и организации практически не используют такую полезную, а часто просто необходимую возможность, предоставляемую большинством современных коммутаторов локальных вычислительных сетей (ЛВС), как организация виртуальных ЛВС (ВЛВС, VLAN) в рамках сетевой инфраструктуры. Трудно сказать, чем это вызвано. Возможно, недостатком информации о преимуществах, предоставляемых технологией VLAN, ее кажущейся сложностью, или нежеланием использовать “сырое” средство, не гарантирующее интероперабельность между сетевыми устройствами различных производителей (хотя технология VLAN уже год как стандартизована, и все ведущие производители активного сетевого оборудования поддерживают этот стандарт). Поэтому данная статья посвящена технологии VLAN. В ней будут рассмотрены преимущества от использования VLAN, наиболее распространенные способы организации VLAN и взаимодействия между ними, а также особенности построения VLAN при использовании коммутаторов некоторых известных производителей.

зачем это нужно

Что же такое VLAN? Это группа подключенных к сети компьютеров, логически объединенных в домен рассылки широковещательных сообщений по какому- либо признаку. Например, группы компьютеров могут выделяться в соответствии с организационной структурой предприятия (по отделам и
подразделениям) или по признаку работы над совместным проектом либо задачей.

Использование VLAN дает три основных преимущества. Это значительно более эффективное использование пропускной способности , чем в традиционных ЛВС, повышенный уровень защиты передаваемой информации от несанкционированного доступа и упрощение сетевого администрирования.

Так как при использовании VLAN вся сеть логически разбивается на широковещательные домены, информация передается членами VLAN только другим членам той же VLAN, а не всем компьютерам физической сети. Таким образом, широковещательный трафик (обычно генерируемый серверами, сообщающими о своем присутствии и возможностях другим устройствам сети) ограничивается предопределенным доменом, а не передается всем станциям сети. Этим достигается оптимальное распределение пропускной способности сети между логическими группами компьютеров: рабочие станции и серверы из разных VLAN “не видят” друг друга и не мешают один одному.

Поскольку обмен данными ведется только внутри конкретной VLAN, компьютеры из разных виртуальных сетей не могут получать трафик, генерируемый в других VLAN. Применение анализаторов протоколов и средств сетевого мониторинга для сбора трафика в других VLAN, помимо той, к которой принадлежит желающий это сделать пользователь, представляет значительные трудности. Именно поэтому в среде VLAN передаваемая по сети информация гораздо лучше защищена от несанкционированного доступа.

Еще одно преимущество использования VLAN - это упрощение сетевого администрирования. Особенно это касается таких задач, как добавление к сети новых элементов, их перемещение и удаление. Например, при переезде какого-либо пользователя VLAN в другое помещение, пусть даже находящееся на другом этаже или в другом здании предприятия, сетевому администратору нет необходимости перекоммутировать кабели. Ему нужно всего лишь со своего рабочего места соответствующим образом настроить сетевое оборудование. Кроме того, в некоторых реализациях VLAN контроль над перемещениями членов VLAN может осуществляться автоматически, не требуя вмешательства администратора. Операции по созданию новых логических групп пользователей, добавлению новых членов в группы сетевой администратор также может осуществлять по сети, не сходя со своего рабочего места. Все это существенно экономит рабочее время администратора, которое может быть использовано на решение других не менее важных задач.

способы организации VLAN

Ведущие производители коммутаторов уровня отдела и рабочей группы используют в своих устройствах, как правило, один из трех способов организации VLAN: на базе портов, МАС-адресов или протоколов третьего уровня. Каждый из этих способов соответствует одному из трех нижних уровней модели взаимодействия OSI: физическому, канальному и сетевому соответственно. Существует четвертый способ организации VLAN - на основе правил. В настоящее время он используется редко, хотя обеспечивает большую гибкость при организации VLAN, и, возможно, будет широко использоваться в устройствах ближайшего будущего. Давайте вкратце рассмотрим каждый из перечисленных выше способов организации VLAN, их достоинства и недостатки.

VLAN на базе портов. Как следует из названия способа, VLAN организуются путем логического объединения выбранных физических портов коммутатора. Например, сетевой администратор может указать, что порты коммутатора с номерами 1, 2, 5 образуют VLAN1, а порты с номерами 3, 4, 6 образуют VLAN2 и т.д.. К одному порту коммутатора может быть подключено несколько компьютеров (например, через хаб). Все они будут принадлежать к одной VLAN - к той, к которой приписан обслуживающий их порт коммутатора. Такая жесткая привязка членства в VLAN является недостатком способа организации виртуальных сетей на базе портов.

VLAN на базе МАС-адресов. Этот способ позволяет строить VLAN, основываясь на уникальном шестнадцатеричном адресе канального уровня, который имеет каждый сетевой адаптер сервера или рабочей станции сети. Это более гибкий способ организации VLAN по сравнению с предыдущим, так как к одному порту коммутатора могут быть подключены устройства, принадлежащие к разным VLAN. Кроме того, перемещения компьютеров с одного порта коммутатора на другой отслеживаются коммутатором автоматически и позволяют сохранить принадлежность переместившегося компьютера к определенной VLAN без вмешательства сетевого администратора. Действует это довольно просто: коммутатор поддерживает таблицу соответствия МАС-адресов компьютеров виртуальным сетям. Как только компьютер переключается на другой порт коммутатора, сравнивая поле МАС-адреса отправителя в заголовке первого переданного после перемещения компьютером кадра с данными своей таблицы, коммутатор делает правильный вывод о принадлежности переместившегося компьютера к VLAN. Недостатком данного способа организации VLAN является изначальная трудоемкость конфигурирования VLAN, которая чревата ошибками. Хотя таблица МАС-адресов коммутаторами строится автоматически, сетевому администратору нужно всю ее просмотреть и определить, что данный шестнадцатеричный адрес МАС соответствует такой-то рабочей станции, после чего приписать его к соответствующей виртуальной сети. Правда, последующая реконфигурация VLAN на базе МАС-адресов потребует значительно меньше усилий, чем в случае VLAN на базе портов.

VLAN на базе протоколов третьего уровня. Данный способ редко используется в коммутаторах уровня отдела и рабочей группы. Он характерен для магистральных маршрутизирующих коммутаторов, имеющих встроенные средства маршрутизации основных протоколов ЛВС - IP, IPX и AppleTalk. Согласно этому способу, группа портов коммутатора, принадлежащих к определенной VLAN, ассоциируется с определенной подсетью IP или сетью IPX. Гибкость здесь обеспечивается тем, что перемещения пользователя на другой порт, принадлежащий той же VLAN, отслеживается коммутатором и не требует его переконфигурации. Преимуществом данного способа является также простота конфигурации VLAN, которая может осуществляться автоматически, поскольку коммутатор анализирует сетевые адреса компьютеров, соотносимых с каждой VLAN. К тому же, как уже упоминалось, поддерживающие способ организации VLAN на базе протоколов третьего уровня устройства имеют встроенные средства маршрутизации, что обеспечивает возможность взаимодействия между различными VLAN без использования дополнительных средств. Недостаток у этого способа, пожалуй, всего один - высокая цена коммутаторов, в которых он реализован.

VLAN на основе правил. Предполагают наличие у коммутатора способности подробно анализировать заранее определенные поля и даже отдельные биты проходящих через него пакетов как механизмы построения VLAN. Этот способ обеспечивает практически неограниченные возможности создания виртуальных сетей на основе множества критериев. Например, даже по принципу включения в VLAN всех пользователей, в чьи компьютеры установлены сетевые адаптеры указанного производителя. Несмотря на огромную гибкость, процесс конфигурации VLAN на основе правил очень трудоемок. К тому же наличие сложных правил может отрицательно сказаться на пропускной способности коммутатора, поскольку значительная часть его вычислительной мощности будет тратиться на анализ пакетов.

Также устройства могут быть автоматически перемещены в VLAN, основываясь на данных аутентификации пользователя или устройства при использовании протокола 802.1x.

построение распределенных VLAN

Современные ЛВС нередко содержат более одного коммутатора. Принадлежащие к одной VLAN компьютеры могут быть подключены к разным коммутаторам. Таким образом, чтобы правильно направлять трафик, должен существовать механизм, позволяющий коммутаторам обмениваться информацией о принадлежности подключенных к ним устройств к VLAN. Раньше каждый производитель в своих устройствах реализовывал фирменные механизмы обмена такой информацией. Например, у 3Com эта технология носила название VLT (Virtual LAN Trunk), у Cisco Systems - ISL (Inter-Switch Link). Поэтому для построения распределенных VLAN необходимо было использовать устройства от одного производителя. Ситуация коренным образом улучшилась, когда был принят стандарт на построение тегированных VLAN - IEEE 802.1Q, который сайчас и господствует в мире VLAN. Помимо всего прочего, он регламентирует и механизм обмена информацией о VLAN между коммутаторами. Этот механизм позволяет дополнять передаваемые между коммутаторами кадры полями, указывающими на принадлежность к той или иной VLAN. На сегодняшний день все ведущие производители коммутаторов ЛВС поддерживают в своих устройствах стандарт 802.1Q. Следовательно, сегодня уже можно строить виртуальные сети, используя коммутаторы от разных производителей. Хотя, как вы увидите позже, даже работая в соответствии с 802.1Q, коммутаторы разных производителей предоставляют далеко не одинаковые возможности по организации VLAN.

организация взаимодействия между VLAN

Находящиеся в разных VLAN компьютеры не могут непосредственно взаимодействовать друг с другом. Для организации такого взаимодействия необходимо использовать маршрутизатор. Раньше для этого использовались обычные маршрутизаторы. Причем требовалось, чтобы маршрутизатор имел столько физических сетевых интерфейсов, сколько имеется VLAN. Помимо этого, на коммутаторах приходилось выделять по одному порту из каждой VLAN для подключения маршрутизатора. Учитывая дороговизну портов маршрутизатора, стоимость такого решения была очень высокой. Кроме того, обычный маршрутизатор вносил существенную задержку в передачу данных между VLAN. Сегодня для передачи данных между VLAN используют маршрутизирующие коммутаторы, которые имеют невысокую цену за порт и осуществляют аппаратную маршрутизацию трафика со скоростью работы канала связи. Маршрутизирующие коммутаторы также соответствуют стандарту IEEE 802.1Q, и для организации взаимодействия между распределенными VLAN им необходимо использовать всего по одному порту для подключения каждого из коммутаторов рабочих групп, осуществляющих подключение к сети устройств, соответствующих разным VLAN. Иными словами, через один порт современного маршрутизирующего коммутатора может происходить обмен информацией между устройствами из разных VLAN.

использование общих сетевых ресурсов компьютерами разных VLAN

Очень интересной является возможность организации доступа к общим сетевым ресурсам (сетевым серверам, принтерам и т.д.) компьютерам, относящимся к разным VLAN. Преимущества такой возможности очевидны. Во-первых, нет необходимости приобретать маршрутизатор или маршрутизирующий коммутатор, если не требуется организовать прямой обмен данными между компьютерами из разных VLAN. Обеспечить взаимодействие между компьютерами разных VLAN можно через сетевой сервер, доступ к которому имеют все или несколько VLAN. Во-вторых, сохраняя все преимущества использования VLAN, можно не приобретать серверы для каждой VLAN в отдельности, а использовать общие.

Самый простой способ дать доступ к одному серверу пользователям из разных VLAN - это установить в сервер несколько сетевых адаптеров и подключить каждый из этих адаптеров к портам коммутатора, принадлежащим разным VLAN. Однако такой подход имеет ограничение по количеству VLAN (в сервер нельзя установить много сетевых адаптеров), предъявляет строгие требования к компонентам сервера (драйверы сетевых адаптеров требуют увеличения количества ОЗУ, создается большая нагрузка на ЦПУ и шину ввода-вывода сервера и т.д.) и не способствует экономии денежных средств (использование нескольких сетевых адаптеров и дополнительных портов коммутатора).

С появлением стандарта IEEE 802.1Q стало возможным через один порт коммутатора передавать информацию, относящуюся ко всем или нескольким VLAN. Как уже упоминалось выше, для этого в передаваемый по сети кадр коммутатор (или другое устройство, поддерживающее 802.1Q) добавляет поле, однозначно определяющее принадлежность кадра к определенной VLAN. К такому порту как раз можно подключить всего одной линией связи общий для всех VLAN сервер. Единственное условие при этом - сетевой адаптер сервера должен поддерживать стандарт 802.1Q, чтобы сервер мог знать, из какой VLAN пришел запрос и, соответственно, куда направить ответ. Так реализуется разделение сервера между VLAN в управляемых коммутаторах уровня отдела и рабочей группы у 3Com, Hewlett-Packard и Cisco Systems.

заключение

Как видите, VLAN являются мощным средством организации сети, способным решить проблемы администрирования, безопасности передачи данных, разграничения доступа к информационным ресурсам и значительно увеличить эффективность использования полосы пропускания сети.

Олег Подуков, начальник технического отдела Компании «КОМПЛИТ»

Представим такую ситуацию. У нас есть офис небольшой компании, имеющей в своем арсенале 100 компьютеров и 5 серверов. Вместе с тем, в этой компании работают различные категории сотрудников: менеджеры, бухгалтеры, кадровики, технические специалисты, администраторы. Необходимо, чтобы каждый из отделов работал в своей подсети. Каким образом разграничить трафик этой сети? Вообще есть два таких способа: первый способ - разбить пул IP-адресов на подести и выделить для каждого отдела свою подсеть, второй способ - использование VLAN.

VLAN (Virtual Local Area Network) - группа узлов сети, трафик которой, в том числе и широковещательный, на канальном уровне полностью изолирован от трафика других узлов сети. В современных сетях VLAN - главный механизм для создания логической топологии сети, не зависящей от ее физической топологии.

Технология VLAN определена в документе IEEE 802.1q - открытый стандарт, который описывает процедуру тегирования для передачи информации о принадлежности к VLAN. 802.1q помещает внутрь ethernet фрейма тег, который передает информацию о принадлежности трафика к VLAN.

Рассмотрим поля VLAN TAG:

  • TPID (Tag Protocol Identifier) - идентификатор протокола тегирования. Указывает какой протокол используется для тегирования. Для 802.1Q используется значение 0x8100.
  • Priority - приоритет. Используется для задания приоритета передаваемого трафика (QoS).
  • CFI (Canoncial Format Indicator) - указывает на формат MAC-адреса (Ethernet или Token Ring).
  • VID (Vlan Indentifier) - идентификатор VLAN. Указывает какому VLAN принадлежит фрейм. Можно задавать число от 0 до 4094.

Компьютер при отправке фреймов ничего не знает в каком VLAN он находится - этим занимается коммутатор. Коммутатор знает к какому порту подключен компьютер и на основании этого определит в каком VLAN этот компьютер находится.

У коммутатора есть два вида портов:

  • Тегированный порт (tagged, trunk) - порт, через который можно передавать или получать трафик нескольких VLAN-групп. При передаче через тегированный порт, к кадру добавляется метка VLAN. Используется для подключения к коммутаторам, маршрутизаторам (то есть тем устройствам, которые распознают метки VLAN).
  • Нетегированный порт (untagged, access) - порт, через который передаются нетегированные кадры. Используется для подключения к конечным узлам (компьютерам, серверам). Каждый нетегированный порт находится в определенном VLAN. При передаче трафика с данного порта, метка VLAN удаляется и до компьютера (который не распознает VLAN) идет уже нетегированный трафик. В обратном случае, при приеме трафика на нетегированный порт к нему добавляется метка VLAN.

Настройка VLAN на управляемом коммутаторе Dlink DES-3528

Серия коммутаторов DES-3528/3552 xStack включает в себя стекируемые коммутаторы L2+ уровня доступа, обеспечивающие безопасное подключение конечных пользователей к сети крупных предприятий и предприятий малого и среднего бизнеса (SMB). Коммутаторы обеспечивают физическое стекирование, статическую маршрутизацию, поддержку многоадресных групп и расширенные функции безопасности. Все это делает данное устройство идеальным решением уровня доступа. Коммутатор легко интегрируется с коммутаторами уровня ядра L3 для формирования многоуровневой сетевой структуры с высокоскоростной магистралью и централизованными серверами. Коммутаторы серии DES-3528/3552 снабжены 24 или 48 портами Ethernet 10/100Мбит/с и поддерживают до 4-х uplink-портов Gigabit Ethernet.

Рассмотрим принципы настройки VLAN на управляемых коммутаторах Dlink. В ходе работы изучим способы создания, удаления, изменения VLAN, добавления различных видов портов (тегированных и нетегированных).

Подключение к коммутатору производится через консольный порт с помощью программы HyperTerminal.

С помощью команды show vlan посмотрим информацию о существующих VLAN.

На рисунке выше видно, что изначально на коммутаторе создан только один VLAN по умолчанию с именем default. Команда show vlan выводит следующие поля:

  • VID – идентификатор VLAN
  • VLAN Type – тип VLAN
  • Member Ports – задействованные порты
  • Static Ports – статические порты
  • Current Tagged Ports – текущие тегированные порты
  • Current Untagged Ports – текущие нетегированные порты
  • Static Tagged Ports – статические тегированные порты
  • Static Untagged Ports – статические нетегированные порты
  • Total Entries – всего записей
  • VLAN Name – имя VLAN
  • Advertisement – статус

Создадим новый VLAN, в котором в качестве имени используются инициалы AA, а в качестве идентификатора – номер 22. Для этого воспользуемся командой create vlan.

В новый VLAN пока не входит ни одного порта. С помощью config vlan изменим VLAN AA так, чтобы в нем появились тегированные порты 10, 14-17 и нетегированные порты 2-5.

Командой show vlan выведем информацию о созданных VLAN.

В начале истории Ethernet, локальные сети ограничивались одним доменном коллизий. При появлении мостов с двумя и более портами, стало возможным сегментировать большую сеть на меньшие домены коллизий, значительно улучшив производительность сети. Однако это не уменьшало перегрузок сети, вызванных внезапным широковещательным штормом. Широковещательный трафик свободно перемещался через Ethernet-мосты.

C появлением Ethernet-маршрутизаторов, пользователей сети стали группировать в рабочие группы с общим доменном коллизий. Это не только улучшило эффективность сети внутри каждой группы, но и уменьшило перегрузки общей сети , вызванное внезапным широковещательным штормом. Однако разделение общей сети маршрутизаторами на рабочие группы вызвало другие проблемы. Связь между рабочими группами стала возможно только через маршрутизаторы уровня 3. Это замедлило доступ к глобальным серверам компании.

С появлением технологии коммутируемого VLAN Ethernet стало возможно логического сегментирования сети на множество широковещательных доменов, улучшающее производительность сети и уменьшающее широковещательный трафик, без замедления доступа к глобальным серверам компании.

Коммутируеммый VLAN Ethernet

С появление коммутируемого Ethernet потребность его на рынке все возрастала и возрастала. На протяжении нескольких лет число коммутируемых портов в корпоративных сетях постоянно возрастало. При этом каждый коммутируемый порт был разделен все меньшим и меньшим числом пользователе сети, и даже достиг одиночного подключения каждого пользователя сети к коммутируемым портам. Этот тип сетевой инфраструктуры лучше всего пригоден для развертывания Виртуальных Локальных Сетей (VLAN).

Виртуальные сети могут быть определенны как группы пользователей отнесенные к определенным отделам или выполняющие общие функции, без ограничения физическим местонахождением пользователей и даже без ограничения использования разных сетевых устройств (коммутаторов), к которым они подключены физически.

Вышенаписанное предложение как бы определяет граници Виртуальной локальной сети (VLAN). Чаще Виртуальную локальную сеть воспринимают как общий домен широковещания. Технология VLAN делит большой домен широковещания на меньшие домены широковещания, ограничивая широковещательный трафик в пределах одной группы пользователей.

Порт ориентированная ВЛС

Этот тип виртуальных локальных сетей (ВЛС) определяет членство каждой ВЛС на основе номера подключенного порта. Смотрите следующий пример порт ориентированной ВЛС.

Пример 1. Порты 3,6,8 и 9 принадлежат к VLAN1 а порты 1,2,4,5 и 7 принадлежат к VLAN2

Таблица 1. Членство в каждой ВЛС определяется номером порта
PORT 1 2 3 4 5 6 7 8 9
VLAN 1 x x x x
VLAN 2 x x x x x

На рисунке 1 покзан пример реализации порт ориентированной ВЛС (на основе коммутатора SXP1224WM и двухскоростного концентратора DX2216 фирмы Compex).

Рис. 1.

В этом примере два концентратора DX2216 подключены к отдельным портам коммутатора SXP1224WM. Так как порт ориентированная ВЛС определяет членство VLAN на основе номера порта, то все рабочие станции подключенные к портам концентратора (DX2216) принадлежат к одной VLAN. В нашем случае, рабочие станции подключенные через концентратор DX2216 к 1 порту коммутатора принадлежат VLAN2, а рабочие станции подключенные через концентратор DX2216 к 3 порту коммутатора принадлежат к VLAN1. Так как эти автоматизированные рабочие места связаны через концентратор DX2216, они должны быть физически размещены не далеко друг от друга. С другой стороны, есть 7 рабочих мест станций, подключенных непосредственно к портам коммутатора (Private Port Switching). Рабочие места подключены к портам 6,8 и 9 коммутатора SXP1224WM физически отдалены от других станций (подключенных через концетратор), тем не менее, все они принадлежат VLAN2.

Для одного коммутатора SXP1224WM максимальное число пользователей с непосредственным (не разделяемым) подключением к коммутируемому порту - 24, по числу портов у этого коммутатора. Как же VLAN может быть реализована, если использован больше чем один коммутатор типа SXP1224WM и пользователи одной VLAN подключены к разным коммутаторам?
На рисунке 2 показан пример подключения пользователей VLAN через несколько коммутаторов.


Рис.2.

VLAN членство для этого примера показываются в таблице 2 и 3.

Таблица 2. VLAN членство SXP1224WM *1
PORT 2 3 4 5 6 7 8 9 10
VLAN x x x x x
VLAN x x x x

Таблица 3. VLAN членство SXP1224WM *2

PORT 2 3 4 5 6 7 8
VLAN x x x
VLAN x x x x

В этом примере на обоих коммутаторах определенны две общие виртуальные подсети (VLAN). VLAN1 в коммутаторе #1 и VLAN1 в коммутаторе #2 есть та же самая общая VLAN, для которой должен быть определен общий порт. В этом случае, порт 6 на коммутаторе #1 и порт 7 на коммутаторе #2 члены VLAN1 и эти порты (порт 6 коммутатора #1 и порт 7 коммутатора #2) связаны вместе. Принимая во внимание, что порт 7 коммутатора #1 и порт 8 коммутатора #2 члены VLAN2, они связаны тоже вместе.

ВЛС с маркированными кадрами (IEEE 802.1Q)

Данный тип VLAN использует второй уровень сетевой модели . В каждый кадр вставляется тег ID идентифицирующий их членство в определенной VLAN. Эту технологию используют что бы создать виртуальные сети (VLAN) охватывающие множество коммутаторов. На рисунке 3 показан пример такой ВЛС.


Рис. 3.

Теги ID в такой ВЛС могут быть добавлены явно или неявно. Если в сети есть сетевые карты с поддержкой IEEE 802.1Q, и на этих картах включены соответствующие опции, то исходящие кадры Ethernet от этих карт будут содержать теги VLAN идентификации. Данные теги идентификации VLAN добавлены явно. Коммутаторы поддерживающие IEEE 802.1Q идентифицируют членство в VLAN проверяя теги ID в кадрах Ethernet.

Если сетевые адаптеры (подключенные к этой сети) не поддерживают протокол IEEE 802.1Q, то добавление тегов VLAN может быть все же выполнено на основе группировки по портам. Предположим, что порты 1-3 сгруппированы в некоторую VLAN. Коммутатотор с поддержкой IEEE 802.1Q будет добавлять тег ID к входящим на этот порт кадрам Ethernet с соответствующим ID VLAN. Но эти теги будут удаленны коммутатором из исходящих кадров.

Если идентификация VLAN тегами протокола 802.1Q была осуществленна обоими спосабами - явно и неявно, входящие кадры к портам коммутатора могут состоять из обоих (с тегами и без) типов кадров. В этой ситуации к неотмеченным входящим кадрам будут добавляться теги ID VLAN описанные методом группировки по портам. В то время как маркированные кадры уже поддерживают членство VLAN определенное явно. Например, если порт 5 был сгруппирован неявно под VLAN1, входящик к порту 5 кадры с отметками ID сети VLAN 2 сохроняют их членство в VLAN2 даже при том что порт 5 был сгруппирован под VLAN1.

ВЛС на основе протоколов высокого уровня

Протокол-основанные VLAN реализованы на 3 уровне сетевой модели, группируя рабочие станции с определенным транспортным протоколом под определенную VLAN. Например, если сеть состоит из компьютеров Apple и рабочих станций Unix, соответственно используя протоколы AppleTalk и TCP/IP, компьютеры Apple могут сгруппированы в одну VLAN в то время как станции Unix в другую. Протокол-основанный VLAN проверяет в пакетах информацию протоколов 3 уровня и позволяет пакетам с определенным транспортным протоколом (AppleTalk или TCP/IP) участвовать в соответствующем домене широковещания. На рисунке 4 показан пример реализации такой ВЛС.


Рис. 4

Преимущества VLAN

Виртуальные Рабочие группы

Главная функция виртуальных сетей это создание виртуальных рабочих групп, основанных на общих функциях пользователей и общих ресурсах, в доступе к которым они нуждаются. Например, предприятие состоит из множества департаментов - учета, снабжения, маркетинга, продаж и т.д.. Пользователям каждого департамента необходим доступ к определенным своим ресурсам. При помощи реализации VLAN пользователи каждого департамента могут быть логически описаны и сгруппированы в различные рабочие группы с различными доступными ресурсами сети.

Повышение производительности сети

Поскольку мы договорились, что ВЛС подобна домену широковещания, и что виртуальные локальные сети соответствуют реальным доменнам широковещания в сетях с несколькими VLAN. Предположим имеется сеть с 1000 автоматизированных рабочих мест расположенных в одном домене широковещания. Каждая рабочая станция в этой сети принимает широковещательный трафик, генерируемый другими рабочими станциями. При использовании VLAN технологии эта большая сеть с большим широковещательным трафиком сегментируется на множество широковещательных доменов с несколькими рабочими станциями на один широковешательный домен. Следовательно частота (плотность) широковещания будет уменьшена. Производительность каждой подсети возрастает, потому что все сетевые устройства сети меньше отвлекается от передачи реальных данных при приеме широковещательного трафика.


Рис. 5

Разрушение традиционных концепций границ сети

В прошлом, рабочиее станции в той же самой рабочей группе или отделе обычно физически располагались в одном и том же месте. При использовании технологии VLAN, пользователи сети одной рабочей группы или отдела меньше ограничены их физическим местонахождением. Эта свобода зависит от возможностей применяемых Ethernet коммутаторов. В случае применения VLAN, пользователи сети одной рабочей группы или отдела могут находится на разных этажах и даже в разных зданиях и при этом относиться к одной виртуальной сети, как это показано на рисунке 6.


Рис. 6

На рисунке 6 показана сеть расположенная на двух различных этажах здания. На втором этаже все 5 рабочих мест подключены напрямую к Ethernet-коммутатору (private port switching). Заметьте, что 3 рабочих места на 1 этаже подключены к двухскоростному концентратору DX2216, а два других рабочих места подключены напрямую к потртам коммутатора, также как на 2 этаже. Коммутируемй потрт, через который каскадируется концетратор DX2216 определен к VLAN2, следовательно все три компьютера подключенные к DS2216 относятся к VLAN2. Рабочие станции подключенные к двухскоростному концетратору DX2216 должны физически близко располагаться друг к другу и принадлежать одной рабочей группе или отделу. С другой стороны, рабочие места подключенные к одному и тому же коммутатору с поддержкой VLAN не обязательно должны принадлежать одной рабочей группе или отделу. А рабочие станции подключенные к различным коммутаторам, не связанные физическим расположением могут принадлежать одной рабочей группе или департаменту и учавствовать в одном домене широковещания.

Безопасность и разделение доступа к сетевым ресурсам

Многие управляемые коммутаторы (например SXP1216/24WM и SGX3224/PLUS фирмы Compex) позволяют одному коммутируемому порту иметь членство в нескольких VLAN. Например, Порт 5 коммутатора может одновременно принадлежать VLAN1, VLAN2 и VLAN3, и участвовать в широковещании всех трех виртуальных сетей. Благодаря этой возможности сервер подключенный к порту 5 может предоставлять доступ рабочим станциям во всех трех сетях. С другой стороны, доступ к серверам одного отдела, подключенных к портам с членством в одной VLAN возможен только в пределах соответствующей VLAN.


Рис. 7

Уменьшение затрат при перемещения персонала

Положим есть потребность перемещения рабочих мест персонала из различных отделов в пределах компании, или изменения физического местоположения конкретного отдела. При применении тегового VLAN (IEEE 802.1Q) с прямым подключением к коммутируемым портам, стоимость перемещения включает только физическое перемещение рабочих мест персонала, потому что индентификоторы ID членства VLAN будут перенесены вместе с рабочими станциями сети. Нет никакой потребности в реконструкции соединений на существующих коммутаторах Ethernet.

Заключение

Даже при том, что для организации виртуальных локальных сетей существуют утвержденные стандарты, тем не менее способы построения ВЛС и способы назначения членства в ВЛС зависит от характеристик оборудования предоставляемого различными вендорами. Например, ВЛС могут создаваться путем группирования членства по номерам портов коммутаторов. А при обработке содержимого кадров Ethernet возможно группировать членство на основе таблицы MAC адресов или по содержимому специального тега ID кадра Ethernet.

Если вам требуется или вы решили самостоятельно подключить роутер/модем от компании «Ростелеком» , если вам нужно подключить IPTV или услуги цифровой телефонии, то вы должны знать, что такое VLAN ID и как его найти.

VLAN ID - это идентификационный 12-битный набор цифр, благодаря которому можно создавать многоуровневые виртуальные сети, обходя любые физические препятствия, как, например, географическое положение, передавать определённую информацию на нужные девайсы. Технология «ВиЛан» присутствует в устройствах, которые и обеспечивают создание одной общей сети. Если говорить простым языком, «ВиЛан» ID - это адрес, на который специальные устройства, распознающие его (коммутаторы), отправляют пакеты данных.

Технология довольно удобная, имеет свои как преимущества, так и недостатки, используется компанией «Ростелеком» для передачи данных: например, для цифрового телевидения (IPTV). То есть, если вы самостоятельно решили подключиться или настроить IPTV, то вам необходимо знать идентификатор. Как можно догадаться, российская компания использует эти специальные наборы цифр для того, чтобы люди по общему «адресу» могли использовать свои модемы/роутеры для просмотра IPTV. То есть, этот «маяк» позволяет получать одинаковую информацию разным людям.

Делается это не только для удобства и обхода физических границ. Идентификатор позволяет обезопасить доступ к различным виртуальным сетям. К примеру, отделить гостевые соединения от подключений предприятия или в случае с IPTV предоставить доступ только определённым пользователям.


Тегирующий трафик

Существуют тегированные и нетегированные порты. Это значит, что есть порты использующие теги, а есть не использующие. Нетегированный порт может передавать только личный VLAN, тегированный - может принимать и отдавать трафик из различных «маяков».

Теги «прикрепляются» к трафику для того, чтобы сетевые коммутаторы могли опознавать его и принимать. Теги применяются и компанией «Ростелеком» .

Самое интересное, что позволяют теги - компьютеры могут быть подключены к одному коммутатору (свитчу), получать сигнал Wi-Fi с одной точки. Но при этом они не будут видеть друг друга и получать не одинаковые данные, если принадлежат к разным «маячкам». Это благодаря тому, что для одного «ВиЛан» используются определённые теги, а другой может быть, вообще, нетегирующим и не пропускать этот трафик.

Включить эту функцию

Включить этот идентификатор нужно для того, чтобы устройства, принимающие информацию, могли её видеть. В противном случае вся зашифрованная информация не будет видна.

Таким образом, стоит активировать VLAN для каждой конкретной услуги. Если он уже активирован, и делали это не вы, всё равно стоит знать свой «адрес».

Как узнать свой ID?

Если идентификатора у вас нет, а вам очень надо найти его как можно быстрее, то спросить можно у соседей по дому. Другой вариант - оставить заявку, позвонив на горячую линию «Ростелеком». После вашу заявку отправят в техническую поддержку региона, где известны ID-адреса вашего населённого пункта.

Итак, теперь вы знаете, по какому принципу работает IPTV от Ростелекома. Также вам известно, для чего применяются теги, как узнать свой VLAN, и какую роль он играет.

VLANs - это виртуальные сети, которые существуют на втором уровне модели OSI . То есть, VLAN можно настроить на коммутаторе второго уровня. Если смотреть на VLAN, абстрагируясь от понятия «виртуальные сети», то можно сказать, что VLAN - это просто метка в кадре, который передается по сети. Метка содержит номер VLAN (его называют VLAN ID или VID), - на который отводится 12 бит, то есть, вилан может нумероваться от 0 до 4095. Первый и последний номера зарезервированы, их использовать нельзя. Обычно, рабочие станции о VLAN ничего не знают (если не конфигурировать VLAN на карточках специально). О них думают коммутаторы. На портах коммутаторов указывается в каком VLAN они находятся. В зависимости от этого весь трафик, который выходит через порт помечается меткой, то есть VLAN. Таким образом каждый порт имеет PVID (port vlan identifier ).Этот трафик может в дальнейшем проходить через другие порты коммутатора(ов), которые находятся в этом VLAN и не пройдут через все остальные порты. В итоге, создается изолированная среда (подсеть), которая без дополнительного устройства (маршрутизатора) не может взаимодействовать с другими подсетями.

Зачем нужны виланы?

  • Возможность построения сети, логическая структура которой не зависит от физической. То есть, топология сети на канальном уровне строится независимо от географического расположения составляющих компонентов сети.
  • Возможность разбиения одного широковещательного домена на несколько широковещательных доменов. То есть, широковещательный трафик одного домена не проходит в другой домен и наоборот. При этом уменьшается нагрузка на сетевые устройства.
  • Возможность обезопасить сеть от несанкционированного доступа. То есть, на канальном уровне кадры с других виланов будут отсекаться портом коммутатора независимо от того, с каким исходным IP-адресом инкапсулирован пакет в данный кадр.
  • Возможность применять политики на группу устройств, которые находятся в одном вилане.
  • Возможность использовать виртуальные интерфейсы для маршрутизации.

Примеры использования VLAN

  • Объединение в единую сеть компьютеров, подключенных к разным коммутаторам . Допустим, у вас есть компьютеры, которые подключены к разным свитчам, но их нужно объединить в одну сеть. Одни компьютеры мы объединим в виртуальную локальную сетьVLAN 1 , а другие - в сеть VLAN 2 . Благодаря функции VLAN компьютеры в каждой виртуальной сети будут работать, словно подключены к одному и тому же свитчу. Компьютеры из разных виртуальных сетей VLAN 1 и VLAN 2 будут невидимы друг для друга.
  • Разделение в разные подсети компьютеров, подключенных к одному коммутатору. На рисунке компьютеры физически подключены к одному свитчу, но разделены в разные виртуальные сети VLAN 1 и VLAN 2 . Компьютеры из разных виртуальных подсетей будут невидимы друг для друга.


  • Разделение гостевой Wi-Fi сети и Wi-Fi сети предприятия. На рисунке к роутеру подключена физически одна Wi-Fi точка доступа. На точке созданы две виртуальные Wi-Fi точки с названиями HotSpot и Office . К HotSpot будут подключаться по Wi-Fi гостевые ноутбуки для доступа к интернету, а к Office - ноутбуки предприятия. В целях безопасности необходимо, чтобы гостевые ноутбуки не имели доступ к сети предприятия. Для этого компьютеры предприятия и виртуальная Wi-Fi точка Office объединены в виртуальную локальную сеть VLAN 1 , а гостевые ноутбуки будут находиться в виртуальной сети VLAN 2 . Гостевые ноутбуки из сети VLAN 2 не будут иметь доступ к сети предприятия VLAN 1 .


Достоинства использования VLAN

  • Гибкое разделение устройств на группы
  • Как правило, одному VLAN соответствует одна подсеть. Компьютеры, находящиеся в разных VLAN, будут изолированы друг от друга. Также можно объединить в одну виртуальную сеть компьютеры, подключенные к разным коммутаторам.
  • Уменьшение широковещательного трафика в сети
  • Каждый VLAN представляет отдельный широковещательный домен. Широковещательный трафик не будет транслироваться между разными VLAN. Если на разных коммутаторах настроить один и тот же VLAN, то порты разных коммутаторов будут образовывать один широковещательный домен.
  • Увеличение безопасности и управляемости сети
  • В сети, разбитой на виртуальные подсети, удобно применять политики и правила безопасности для каждого VLAN. Политика будет применена к целой подсети, а не к отдельному устройству.
  • Уменьшение количества оборудования и сетевого кабеля
  • Для создания новой виртуальной локальной сети не требуется покупка коммутатора и прокладка сетевого кабеля. Однако вы должны использовать более дорогие управляемые коммутаторы с поддержкой VLAN.

Тэгированные и нетэгированные порты

Когда порт должен уметь принимать или отдавать трафик из разных VLAN, то он должен находиться в тэгированном или транковом состоянии. Понятия транкового порта и тэгированного порта одинаковые. Транковый или тэгированный порт может передавать как отдельно указанные VLAN, так и все VLAN по умолчанию, если не указано другое. Если порт нетэгирован, то он может передавать только один VLAN (родной). Если на порту не указано в каком он VLAN, то подразумевается, что он в нетэгированном состоянии в первом VLAN (VID 1).

Разное оборудование настраивается по-разному в данном случае. Для одного оборудования нужно на физическом интерфейсе указать в каком состоянии находится этот интерфейс, а на другом в определенном VLAN необходимо указать какой порт как позиционируется - с тэгом или без тэга. И если необходимо, чтобы этот порт пропускал через себя несколько VLAN, то в каждом из этих VLAN нужно прописать данный порт с тэгом. Например, в коммутаторах Enterasys Networks мы должны указать в каком VLAN находится определенный порт и добавить этот порт в egress list этого VLAN для того, чтобы трафик мог проходить через этот порт. Если мы хотим чтобы через наш порт проходил трафик еще одного VLAN, то мы добавляем этот порт в egress list еще и этого VLAN. На оборудовании HP (например, коммутаторах ProCurve ) мы в самом VLAN указываем какие порты могут пропускать трафик этого VLAN и добавляем состояние портов - тэгирован или нетегирован. Проще всего на оборудовании Cisco Systems . На таких коммутаторах мы просто указываем какие порты какими VLAN нетэгированы (находятся в режимеaccess ) и какие порты находятся в тэгированном состоянии (находятся в режиме trunk ).

Для настройки портов в режим trunk созданы специальные протоколы. Один из таких имеет стандарт IEEE 802.1Q. Это международный стандарт, который поддерживается всеми производителями и чаще всего используется для настройки виртуальных сетей. Кроме того, разные производители могут иметь свои протоколы передачи данных. Например, Cisco создала для свого оборудования протокол ISL (Inter Switch Lisk ).

Межвлановская маршрутизация

Что такое межвлановская маршрутизация? Это обычная маршрутизация подсетей. Разница только в том, что каждой подсети соответствует какой-то VLAN на втором уровне. Что это значит. Допустим у нас есть два VLAN: VID = 10 и VID = 20. На втором уровне эти VLAN осуществляют разбиение одной сети на две подсети. Хосты, которые находятся в этих подсетях не видят друг друга. То есть, трафик полностью изолирован. Для того, чтобы хосты могли взаимодействовать между собой, необходимо смаршрутизировать трафик этих VLAN. Для этого нам необходимо на третьем уровне каждому из VLAN присвоить интерфейс, то есть прикрепить к ним IP-адрес. Например, для VID = 10 IP address будет 10.0.10.1/24, а для VID = 20 IP address - 10.0.20.1/24. Эти адреса будет дальше выступать в роли шлюзов для выхода в другие подсети. Таким образом, мы можем трафик хостов с одного VLAN маршрутизировать в другой VLAN. Что дает нам маршрутизация VLAN по сравнению с простой маршрутизацией посетей без использования VLAN? А вот что:

  • Возможность стать членом другой подсети на стороне клиента заблокирована. То есть, если хост находится в определенном VLAN, то даже, если он поменяет себе адресацию с другой подсети, он всеравно останется в том VLAN, котором он был. Это значит, что он не получит доступа к другой подсети. А это в свою очередь обезопасит сеть от «плохих» клиентов.
  • Мы можем поместить в VLAN несколько физических интерфейсов коммутатора. То есть, у нас есть возможность на коммутаторе третьего уровня сразу настроить маршрутизацию, подключив к нему клиентов сети, без использования внешнего маршрутизатора. Либо мы можем использовать внешний маршрутизатор подключенный к коммутатору второго уровня, на котором настроены VLAN, и создать столько сабинтерфейсов на порте маршрутизатора, сколько всего VLAN он должен маршрутизировать.
  • Очень удобно между первым и третьим уровнями использовать второй уровень в виде VLAN. Удобно подсети помечать как VLAN с определенными интерфейсами. Удобно настроить один VLANн и поместить в него кучу портов коммутатора. И вообще, много чего удобно делать, когда есть VLAN.
Статья раскрывает особенности настройки технологии VLAN на примере конкретного оборудования.

Доброго времени суток, уважаемый посетитель. Сегодня я, как обычно, по нашей доброй традиции, буду рассказывать кое-что интересное. А рассказ сегодня пойдет про замечательную штуку в локальных сетях под названием VLAN. В природе не мало разновидностей данной технологии, про все рассказывать не будем, а только про те, которые решили бы стоящую перед нашей компанией задачу. Данная технология уже не раз применялась нашими специлистами в нашей практике ИТ аутсорсинга в регионе , Но в этот раз, всё было несколько интереснее, т.к. оборудование с которым пришлось работать - несколько "урезанное" (прошлая похожая задача релизовывалась на коммутаторе D-link DES-1210-28). Но, обо всем по порядку.

Что же такое VLAN ?

VLAN – логическая («виртуальная») локальная сеть, представляет собой группу хостов с общим набором требований, которые взаимодействуют так, как если бы они были подключены к широковещательному домену, независимо от их физического местонахождения. VLAN имеет те же свойства, что и физическая локальная сеть, но позволяет конечным станциям группироваться вместе, даже если они не находятся в одной физической сети. Такая реорганизация может быть сделана на основе программного обеспечения вместо физического перемещения устройств.

Данная технология позволяет выполнять две задачи:

1) группировать устройства на канальном уровне (т.е. устройства, находящиеся в одном VLAN’е), хотя физически при этом они могут быть подключены к разным сетевым коммутаторам (расположенным, к примеру, географически отдаленно);

2) разграничивать устройства (находящиеся в разных VLAN’ах), подключенные к одному коммутатору.

Иначе говоря, VLAN ‘ы позволяют создавать отдельные широковещательные домены, снижая, тем самым, процент широковещательного трафика в сети.

Port - Base VLAN

Port-Base VLAN – представляет собой группу портов или порт в коммутаторе, входящий в один VLAN. Порты в таком VLAN называются не помеченными (не тегированными), это связанно с тем, что кадры приходящие и уходящие с порта не имеют метки или идентификатора. Данную технологию можно описать кратко – VLAN ’ы только в коммутаторе. Эту технологию мы будем рассматривать на управляемом коммутаторе D-link DGS-1100-24.

IEEE 802.1Q

IEEE 802.1Q - открытый стандарт, который описывает процедуру тегирования трафика для передачи информации о принадлежности к VLAN. Для этого в тело фрейма помещается тег, содержащий информацию о принадлежности к VLAN’у. Т.к. тег помещается в тело, а не в заголовок фрейма, то устройства, не поддерживающие VLAN’ы, пропускают трафик прозрачно, то есть без учета его привязки к VLAN’у.

Немного наркомании, а именно - процедура помещения тега в кадр называется – инъекция.

Размер тега - 4 байта. Он состоит из таких полей:

  • Tag Protocol Identifier (TPID, идентификатор протокола тегирования). Размер поля - 16 бит. Указывает какой протокол используется для тегирования. Для 802.1Q используется значение 0x8100.
  • Priority (приоритет). Размер поля - 3 бита. Используется стандартом IEEE 802.1p для задания приоритета передаваемого трафика.
  • Canonical Format Indicator (CFI, индикатор канонического формата). Размер поля - 1 бит. Указывает на формат MAC-адреса. 0 - канонический, 1 - не канонический. CFI используется для совместимости между сетями Ethernet и Token Ring.
  • VLAN Identifier (VID, идентификатор VLAN). Размер поля - 12 бит. Указывает какому VLAN принадлежит фрейм. Диапазон возможных значений от 0 до 4095.

Порты в 802.1Q

Порты могут быть в одном из следующих режимов:

  • Tagged port (в терминологии CISCO - trunk-port) - порт пропускает пакеты маркированные указанными номерами VLAN, но при этом сам никак не маркирует пакеты
  • Untagged port (в терминологии CISCO - access-port) - порт прозрачно пропускает немаркированный трафик для указанных VLAN, если трафик уходит в другие порты коммутатора за пределы указанного VLAN, то там он уже виден как маркированный номером этой VLAN.
  • Порт не принадлежит никаким VLAN и не учувствует в работе коммутатора

Пример. Имеется офисное помещение, в котором отдел кадров разделен на два этажа, нужно, чтобы сотрудники были отделены от общей сети. Имеется два коммутатора. Создадим VLAN 3 на одном и втором, порты, которые будут в одном из VLAN укажем как Untagget Port. Для того, чтобы коммутаторы понимали в какой VLAN адресуется кадр, нужен порт, через который будет пересылаться трафик в этот же VLAN другого коммутатора. Выделим, к примеру, один порт и укажем его как Tagget. Если у нас, помимо VLAN 3, есть еще и другие, и ПК-1 расположенный в VLAN 3 будет искать ПК-2, то широковещательный трафик не будет «ходить» по всей сети, а только в VLAN 3. Прибежавший кадр будет пропускаться через MAC-таблицу, если же адрес получателя не будет найдет, такой кадр будет отправлен через все порты такого VLAN откуда он прибежал и порт Tagget с меткой VLAN, чтобы другой коммутатор воспроизвел широковещание на ту группу портов, которые указаны в поле VID. Данный пример описывает VLAN – один порт может быть только в одном VLAN.

IEEE 802.1 ad

802.1ad - это открытый стандарт (аналогично 802.1q), описывающий двойной тег. Также известен как Q-in-Q, или Stacked VLANs. Основное отличие от предыдущего стандарта - это наличие двух VLAN’ов - внешнего и внутреннего, что позволяет разбивать сеть не на 4095 VLAN’ов, а на 4095х4095.

Сценарии могут быть различны – провайдеру надо “пробросить” транк клиента, не затрагивая схему нумерации VLAN’ов, надо балансировать нагрузку между субинтерфейсами внутри сети провайдера, либо просто – маловато номеров. Самое простое – сделать ещё одну такую же метку (tag).

Асимметричный VLAN

В терминологиях D-Link, а также в настройках VLAN, есть понятие асимметричный VLAN – это такой VLAN, в котором один порт может быть в нескольких VLAN.

Состояние портов меняется

  • Tagged порты работают прежним образом
  • Появляется возможность назначать как Untagged несколько портов на несколько VLAN. Т.е. один порт сразу работает в нескольких VLAN как Untagged
  • У каждого порта появляется еще один параметр PVID - это VLAN ID, которым маркируется трафик с этого порта, если он уходит на Tagged порты и за пределы коммутатора. У каждого порта может быть только один PVID

Таким образом, мы получаем то, что внутри устройства один порт может принадлежать сразу нескольким VLAN, но при этом, уходящий в tagged (TRUNK) порт, трафик будет маркироваться номером, который мы задаем в PVID.

Ограничение: Функция IGMP Snooping не работает при использовании асимметричных VLAN.

Создание VLAN на D- link DGS-1100-24.

Что имеется. Два коммутатора, один из них D-link DGS-1100-24, к нему подключен коммутатор №2. В коммутатор №2 подключены машины пользователей – абсолютно всех, а также сервера, шлюз по умолчанию и сетевое хранилище.

Задача. Ограничить отдел кадров от общей среды, так, чтобы при этом были доступны сервера, шлюз и сетевое хранилище.

Ко всему прочему, коммутатор D-link DGS-1100-24 только что вынули из коробки. По умолчанию большинство управляемых коммутаторов компании D-Link имеют адрес 10.90.90.90/8. Нас не интересует физическое нахождение у коммутатора или смена адреса. Существует специальная утилита D-Link SmartConsole Utility, которая помогает найти наше устройство по сети. После установки запускаем утилиту.

Прежде чем переходить к настройке, переключим порты должным образом:

1) Переключим порт отдела кадров с коммутатора №2 в коммутатор №1

2) Переключим сервера, шлюз и сетевое хранилище с коммутатора №2 в коммутатор №1

3) Подключим коммутатор №2 в коммутатор №1

После такого переключения видим следующую картину: сервера, шлюз, сетевое хранилище и отдел кадров подключены в коммутатор №1, а все остальные пользователи в коммутатор №2.

Жмем кнопку «Discovery»

Ставим галочку и жмем значок шестеренки, открывается окно настройки коммутатора. После задания адреса, маски и шлюза, пишем пароль, который по умолчанию admin.

Жмем «Add VLAN» и указываем имя VLAN и порты

Жмем «Apply»

После создания нужных VLAN, сохраним настройку, для этого нажмем «Save», «Save configuration»

Итак, мы видим, что VLAN 3 не имеет доступа к портам 01-08, 15-24 – следовательно, не имеет доступ к серверам, шлюзу, сетевому хранилищу, к VLAN2 и остальным клиентам – которые подключены к коммутатору №2. Тем не менее VLAN 2 имеет доступ к серверам, шлюзу, сетевому хранилищу, но не имеет к остальным машинам. И наконец, все остальные машины видят сервера, шлюз, сетевое хранилище, но не видят порты 05,06.]

Таким образом, при наличии определенных знананий об особенностях оборудования и навыков ИТ-аутсорсинга , можно удовлетворить потребности клиента даже на таком бюджетном оборудовании как коммутатор D-Link DGS1100-24 .

Все, люди, Мир Вам!

Организация виртуальных локальных сетей VLAN абстрагирует идею физической сети (LAN), предоставляя возможность подключения виртуальной частной сети к линии передачи данных для каждой подсети в отдельности. Один или несколько сетевых vlan коммутаторов могут поддерживать несколько независимых виртуальных сетей. Тем самым давая возможность создавать различные реализации подсетей уровня передачи данных. Часто сегментирование сетей связано с необходимостью ограничения широковещательного домена. Обычно домен обслуживает один или нескольких коммутаторов Ethernet для средних и крупных сетей.

Сети VLAN упрощают сетевым администраторам задачу разбивки единой коммутируемой сети на логические сегменты в соответствии с функционалом и требованиями безопасности работы корпоративных систем. При этом нет необходимости в прокладке и перекоммутации новых кабелей или существенных изменениях в текущей сетевой инфраструктуре. Весь процесс организации новой схемы работы происходит на логическом уровне - на уровне настройки сетевого оборудования. Порты (интерфейсы) на коммутаторах могут быть назначены одной или нескольким виртуальным сетям. Что позволяет разделить систему на логические группы. На основе того, каким подразделениям принадлежит тот или иной сервис или ресурс, устанавливаются правила, согласно которым системам в отдельных группах разрешено связываться друг с другом. Конфигурация групп может варьироваться от простой идеи - компьютеры в одной виртуальной сети могут видеть принтер в этом сегменте, но компьютеры за пределами сегмента не могут, - до относительно сложных моделей. Например, компьютеры в отделах розничного банковского обслуживания не могут взаимодействовать с компьютерами в торговых отделах.

Каждый логический сегмент виртуальной сети обеспечивает доступ к линии передачи данных всем хостам, подключенным к портам коммутатора, настроенным с тем же идентификатором сети. Тег VLAN – это 12-разрядное поле в заголовке Ethernet кадра, которое обеспечивает поддержку до 4096 VLAN для каждого домена коммутации. Маркировка VLAN стандартизована в IEEE (Институт инженеров по электротехнике и электронике) 802.1Q и часто называется Dot1Q.

Маршрутизатор служит для объединения физических локальных сетей

До момента появления виртуальных частных сетей мы должны были сегментировать локальную сеть LAN на основе физических коммутаторов.

Чем больше сегментов вам необходимо организовать, тем больше коммутаторов вам необходимо закупить. Маршрутизатор используется для пересылки трафика между локальными сетями.

Ситуация становится более сложной, если у вас есть 2 отдельных офиса. И если сеть настроена согласно схеме выше, то вам потребуется не один, а два отдельных кабеля между офисами. В зависимости от удаленности локаций прокладка данных трасс может вылиться в серьезные затраты. А теперь представьте, что у вас 3 и более офисов, а отделов в компании, например, 5. Получается, что необходимо прокладывать 15 кабельных трасс - бизнес на такое не пойдет.

Нам необходимо решение, которое помогло бы устранить проблему выше. Мы больше не можем полагаться на физическую сегментацию, поскольку она не является гибкой, более дорогой и делает вашу жизнь сложнее.Решение называется Virtual LAN – VLAN.

Благодаря использованию виртуальных частных сетей VLAN у нас появляется больше возможностей для сегментации сети на основе портов или даже на основе MAC-адреса или протоколов.

Что же такое виртуальные частные сети VLAN и как они работают?

Концепции работы VLAN сетей уходит своими корнями к началу эпохи телекоммуникаций. Когда на коммутаторе настроены сегменту (VLAN10 и VLAN20), мы вставляем VLAN тег непосредственно перед отправкой кадра на магистральную линию (VLAN trunk). Этот тег указывает, к какому сегменту виртуальной сети принадлежит каждый frame. Поэтому, когда кадр прибывает на целевой Ethernet коммутатор, то он знает, в какой vlan он должен переслать сообщение.

Как работает Транк (trunk) соединение?

  • В исходящих кадрах на 2 уровне сетевой модели OSI при пересылке через trunk порт происходит модификация заголовка
  • Коммутатор добавляет VLAN тег 802.1Q между полями Source MAC и EtherType

Обратите внимание, что все эти процессы происходят на 2 уровне модели OSI (уровень передачи данных). Сетевой уровень в данном случае не задействован.

Как происходит обмен трафиком между различными VLAN?

Вопрос аналогичен тому: как передается трафик внутри локальной сети Ethernet? Разделенные сегменты локальной сети 2 уровня (LAN) не могут передавать друг другу данные, если они не связаны с маршрутизатором. Маршрутизатор отвечает за перенаправление кадров в другие сегменты. Поскольку router является устройством 3 уровня, как следствие, все устройства должны использовать заголовок 3 уровня, например IP-адрес.

Все зависит от возможностей маршрутизатора. Если маршрутизатор не поддерживает VLAN, тогда нам нужны порты доступа, которые подключаются к его интерфейсам.

Маршрутизатор не поддерживает режим trunk и VLAN-тегирование

  • 1 VLAN = 1 сегмент сети = 1 широковещательный домен
  • Нам необходим маршрутизатор для пересылки пакетов между VLAN сегментами
  • IP адрес маршрутизатора становится шлюзом по-умолчанию