Что такое процессор и как он работает. Отличие CPU и GPU. Кеш-память в нынешних процессорах имеет пирамидальный вид

CPU (Central Processing Unit) – центральный процессор, главная микросхема в компьютере, его «мозг». Содержит регистровый файл (register file), устройство управления (control unit), устройство управления памятью (MMU), арифметико-логическое устройство (ALU) и другие блоки.

Чем быстрее работает центральный процессор, тем быстрее работает весь ПК. CPU состоит из специальных ячеек, которые называют регистрами, в них находятся команды, которые выполняет процессор, а также данные, которыми оперируют команды. Главными характеристиками центральных процессоров являются быстродействие и разрядность. Под быстродействием понимается количество тактов, выполняемых процессором за секунду. Данный параметр измеряется в мегагерцах (МГц), 1 МГц = 1 000 000 тактов в секунду. Разрядность – это параметр, который является важным для таких устройств компьютера, как внутренние регистры, шина ввода вывода данных, шина адреса памяти.

В настоящее время существует довольно большое разнообразие процессоров, и они постоянно совершенствуются. Ниже приведены основные типы таких CPU.

CISC-процессоры

Complex Instruction Set Computing - вычисления со сложным набором команд. Процессорная архитектура, основанная на усложнённом наборе команд. Типичными представителями CISC является семейство микропроцессоров Intel x86 (хотя уже много лет эти процессоры являются CISC только по внешней системе команд).

RISC-процессоры

Reduced Instruction Set Computing (technology) - вычисления с сокращённым набором команд. Архитектура процессоров, построенная на основе сокращённого набора команд. Характеризуется наличием команд фиксированной длины, большого количества регистров, операций типа регистр-регистр, а также отсутствием косвенной адресации. Концепция RISC разработана Джоном Коком (John Cocke) из IBM Research, название придумано Дэвидом Паттерсоном (David Patterson). Самая распространённая реализация этой архитектуры представлена процессорами серии PowerPC, включая G3, G4 и G5. Довольно известная реализация данной архитектуры - процессоры серий MIPS и Alpha.

MISC-процессоры

Minimum Instruction Set Computing - вычисления с минимальным набором команд. Дальнейшее развитие идей команды Чака Мура, который полагает, что принцип простоты, изначальный для RISC процессоров, слишком быстро отошёл на задний план. В пылу борьбы за максимальное быстродействие, RISC догнал и перегнал многие CISC процессоры по сложности. Архитектура MISC строится на стековой вычислительной модели с ограниченным числом команд (примерно 20–30 команд).

Многоядерные процессоры

Содержат несколько процессорных ядер в одном корпусе (на одном или нескольких кристаллах). Процессоры, предназначенные для работы одной копии операционной системы на нескольких ядрах, представляют собой высокоинтегрированную реализацию системы «Мультипроцессор». На данный момент массово доступны процессоры с двумя ядрами, в частности Intel Core 2 Duo на ядре Conroe и Athlon64X2 на базе микроархитектуры K8.

В ноябре 2006 года вышел первый четырёхъядерный процессор Intel Core 2 Quad на ядре Kentsfield, представляющий собой сборку из двух кристаллов Conroe в одном корпусе. Двухядерность процессоров включает такие понятия, как наличие логических и физических ядер: например двуядерный процессор Intel Core Duo состоит из одного физического ядра, которое в свою очередь разделено на два логических. Процессор Intel Core 2 Duo состоит из двух физических ядер, что существенно влияет на скорость его работы.

10 сентября 2007 года были выпущены в продажу нативные (в виде одного кристалла) четырёхьядерные процессоры для серверов AMD Quad-Core Opteron, имевшие в процессе разработки кодовое название AMD Opteron Barc elona. 19 ноября 2007 вышел в продажу четырёхьядерный процессор для домашних компьютеров AMD Quad-Core Phenom. Эти процессоры реализуют новую микроархитектуру K8L (K10). 27 сентября 2006 года Intel продемонстрировала прототип 80-ядерного процессора. Предполагалось, что массовое производство подобных процессоров станет возможно не раньше перехода на 32-нанометровый техпроцесс, что должно было произойти к 2010 году. В настоящее время распространены процессоры, выполненные по 28 и 22 нанометровому процессу.

Процессор - это, без сомнения, главный компонент любого компьютера. Именно этот небольшой кусочек кремния, размером в несколько десятков миллиметров выполняет все те сложные задачи, которые вы ставите перед своим компьютером. Здесь выполняется операционная система, а также все программы. Но как все это работает? Этот вопрос мы попытаемся разобрать в нашей сегодняшней статье.

Процессор управляет данными на вашем компьютере и выполняют миллионы инструкций в секунду. И под словом процессор, я подразумеваю именно то, что оно на самом деле означает - небольшой чип из кремния, который фактически выполняет все операции на компьютере. Перед тем как перейти к рассмотрению как работает процессор, нужно сначала подробно рассмотреть что это такое и из чего он состоит.

Сначала давайте рассмотрим что такое процессор. CPU или central processing unit (центральное обрабатывающее устройство) - который представляет из себя микросхему с огромным количеством транзисторов, сделанную на кристалле кремния. Первый в мире процессор был разработан корпорацией Intel в 1971 году. Все началось с модели Intel 4004. Он умел выполнять только вычислительные операции и мог обрабатывать только 4 байта данных. Следующая модель вышла в 1974 году - Intel 8080 и мог обрабатывать уже 8 бит информации. Дальше были 80286, 80386, 80486. Именно от этих процессоров произошло название архитектуры.

Тактовая частота процессора 8088 была 5 МГц, а количество операций в секунду только 330 000 что намного меньше чем в современных процессоров. Современные устройства имеют частоту до 10 ГГц и несколько миллионов операций в секунду.

Мы не будем рассматривать транзисторы, переместимся на уровень выше. Каждый процессор состоит из таких компонентов:

  • Ядро - здесь выполняется вся обработка информации и математические операции, ядер может быть несколько;
  • Дешифратор команд - этот компонент относится к ядру, он преобразует программные команды в набор сигналов, которые будут выполнять транзисторы ядра;
  • Кэш - область сверхбыстрой памяти, небольшого объема, в которой хранятся данные, прочитанные из ОЗУ;
  • Регистры - это очень быстрые ячейки памяти, в которых хранятся сейчас обрабатываемые данные. Их есть всего несколько и они имеют ограниченный размер - 8, 16 или 32 бит именно от этот зависит разрядность процессора;
  • Сопроцессор - отдельное ядро, которое оптимизировано только для выполнения определенных операций, например, обработки видео или шифрования данных;
  • Адресная шина - для связи со всеми, подключенными к материнской плате устройствами, может иметь ширину 8, 16 или 32 бит;
  • Шина данных - для связи с оперативной памятью. С помощью нее процессор может записывать данные в память или читать их оттуда. Шина памяти может быть 8, 16 и 32 бит, это количество данных, которое можно передать за один раз;
  • Шина синхронизации - позволяет контролировать частоту процессора и такты работы;
  • Шина перезапуска - для обнуления состояния процессора;

Главным компонентом можно считать ядро или вычислительное-арифметическое устройство, а также регистры процессора. Все остальное помогает работать этим двум компонентам. Давайте рассмотрим какими бывают регистры и какое у них предназначение.

  • Регистры A, B, C - предназначены для хранения данных во время обработки, да, их только три, но этого вполне достаточно;
  • EIP - содержит адрес следующей инструкции программы в оперативной памяти;
  • ESP - адрес данных в оперативной памяти;
  • Z - содержит результат последней операции сравнения;

Конечно, это далеко не все регистры памяти, но эти самые главные и ими больше всего пользуется процессор во время выполнения программ. Ну а теперь, когда вы знаете из чего состоит процессор, можно рассмотреть как он работает.

Как работает процессор компьютера?

Вычислительное ядро процессора может выполнять только математические операции, операции сравнения и перемещение данных между ячейками и оперативной памятью, но этого вполне достаточно, чтобы вы могли играть игры, смотреть фильмы и просматривать веб-страницы и многое другое.

Фактически любая программа состоит из таких команд: переместить, сложить, умножить, делить, разница и перейти к инструкции если выполняется условие сравнения. Конечно, это далеко не все команды, есть другие, которые объединяют между собой уже перечисленные или упрощают их использование.

Все перемещения данных выполняются с помощью инструкции перемещения (mov), эта инструкция перемещает данные между ячейками регистров, между регистрами и оперативной памятью, между памятью и жестким диском. Для арифметических операций есть специальные инструкции. А инструкции перехода нужны для выполнения условий, например, проверить значение регистра A и если оно не равно нулю, то перейти к инструкции по нужному адресу. Также с помощью инструкций перехода можно создавать циклы.

Все это очень хорошо, но как же все эти компоненты взаимодействуют между собой? И как транзисторы понимают инструкции? Работой всего процессора управляет дешифратор инструкций. Он заставляет каждый компонент делать то, что ему положено. Давайте рассмотрим что происходит когда нужно выполнить программу.

На первом этапе дешифратор загружает адрес первой инструкции программы в памяти в регистр следующей инструкции EIP, для этого он активирует канал чтения и открывает транзистор-защелку чтобы пустить данные в регистр EIP.

Во втором тактовом цикле дешифратор инструкций преобразует команду в набор сигналов для транзисторов вычислительного ядра, которые выполняют ее и записывают результат в один из регистров, например, С.

На третьем цикле дешифратор увеличивает адрес следующей команды на единицу, так, чтобы он указывал на следующую инструкцию в памяти. Далее, дешифратор переходит к загрузке следующей команды и так до окончания программы.

Каждая инструкция уже закодирована последовательностью транзисторов, и преобразованная в сигналы, она вызывает физические изменения в процессоре, например, изменению положения защелки, которая позволяет записать данные в ячейку памяти и так далее. На выполнение разных команд нужно разное количество тактов, например, для одной команды может понадобиться 5 тактов, а для другой, более сложной до 20. Но все это еще зависит от количества транзисторов в самом процессоре.

Ну с этим все понятно, но это все будет работать только если выполняется одна программа, а если их несколько и все одновременно. Можно предположить, что у процессора есть несколько ядер, и тогда на каждом ядре выполняется отдельная программ. Но нет, на самом деле там таких ограничений нет.

В один определенный момент может выполняться только одна программа. Все процессорное время разделено между всеми запущенными программами, каждая программа выполняется несколько тактов, затем процессор передается другой программе, а все содержимое регистров сохраняется в оперативную память. Когда управление возвращается этой программе, то в регистры грузятся ранее сохраненные значения.

Выводы

Вот и все, в этой статье мы рассмотрели как работает процессор компьютера, что такое процессор и из чего он состоит. Возможно, это немного сложно, но мы рассмотрели все более просто. Надеюсь, теперь вам стало более ясно то, как работает это очень сложное устройство.

На завершение видео об истории создания процессоров:

Практически все знают, что в компьютере главным элементом среди всех «железных» компонентов является центральный процессор. Но круг людей, которые представляют себе, как работает процессор, является весьма ограниченным. Большинство пользователей об этом и понятия не имеют. И даже когда система вдруг начинает «тормозить», многие считают, что это процессор плохо работает, и не придают значения другим факторам. Для полного понимания ситуации рассмотрим некоторые аспекты работы ЦП.

Что такое центральный процессор?

Из чего состоит процессор?

Если говорить о том, как работает процессор Intel или его конкурент AMD, нужно посмотреть, как устроены эти чипы. Первый микропроцессор (кстати, именно от Intel, модель 4040) появился еще в далеком 1971 году. Он мог выполнять только простейшие операции сложения и вычитания с обработкой всего лишь 4 бит информации, т. е. имел 4-битную архитектуру.

Современные процессоры, как и первенец, основаны на транзисторах и обладают куда большим быстродействием. Изготавливаются они методом фотолитографии из определенного числа отдельных кремниевых пластинок, составляющих единый кристалл, в который как бы впечатаны транзисторы. Схема создается на специальном ускорителе разогнанными ионами бора. Во внутренней структуре процессоров основными компонентами являются ядра, шины и функциональные частицы, называемые ревизиями.

Основные характеристики

Как и любое другое устройство, процессор характеризуется определенными параметрами, которые, отвечая на вопрос, как работает процессор, обойти стороной нельзя. Прежде всего это:

  • количество ядер;
  • число потоков;
  • размер кэша (внутренней памяти);
  • тактовая частота;
  • быстрота шины.

Пока остановимся на тактовой частоте. Не зря процессор называют сердцем компьютера. Как и сердце, он работает в режиме пульсации с определенным количеством тактов в секунду. Тактовая частота измеряется в МГц или в ГГц. Чем она выше, тем больше операций может выполнить устройство.

На какой частоте работает процессор, можно узнать из его заявленных характеристик или посмотреть информацию в Но в процессе обработки команд частота может меняться, а при разгоне (оверлокинге) увеличиваться до экстремальных пределов. Таким образом, заявленная является всего лишь усредненным показателем.

Количество ядер - показатель, определяющий число вычислительных центров процессора (не путать с потоками - количество ядер и потоков могут не совпадать). За счет такого распределения появляется возможность перенаправления операций на другие ядра, за счет чего повышается общая производительность.

Как работает процессор: обработка команд

Теперь немного о структуре исполняемых команд. Если посмотреть, как работает процессор, нужно четко представлять себе, что любая команда имеет две составляющие - операционную и операндную.

Операционная часть указывает, что должна выполнить в данный момент компьютерная система, операнда определяет то, над чем должен работать именно процессор. Кроме того, ядро процессора может содержать два вычислительных центра (контейнера, потока), которые разделяют выполнение команды на несколько этапов:

  • выработка;
  • дешифрование;
  • выполнение команды;
  • обращение к памяти самого процессора
  • сохранение результата.

Сегодня применяется раздельное кэширование в виде использования двух уровней кэш-памяти, что позволяет избежать перехвата двумя и более командами обращения к одному из блоков памяти.

Процессоры по типу обработки команд разделяют на линейные (выполнение команд в порядке очереди их записи), циклические и разветвляющиеся (выполнение инструкций после обработки условий ветвления).

Выполняемые операции

Среди основных функций, возложенных на процессор, в смысле выполняемых команд или инструкций различают три основные задачи:

  • математические действия на основе арифметико-логического устройства;
  • перемещение данных (информации) из одного типа памяти в другой;
  • принятие решения по исполнению команды, и на его основе - выбор переключения на выполнения других наборов команд.

Взаимодействие с памятью (ПЗУ и ОЗУ)

В этом процессе следует отметить такие компоненты, как шина и канал чтения и записи, которые соединены с запоминающими устройствами. ПЗУ содержит постоянный набор байт. Сначала адресная шина запрашивает у ПЗУ определенный байт, затем передает его на шину данных, после чего канал чтения меняет свое состояние и ПЗУ предоставляет запрошенный байт.

Но процессоры могут не только считывать данные из оперативной памяти, но и записывать их. В этом случае используется канал записи. Но, если разобраться, по большому счету современные компьютеры чисто теоретически могли бы и вовсе обойтись без ОЗУ, поскольку современные микроконтроллеры способны размещать нужные байты данных непосредственно в памяти самого процессорного чипа. Но вот без ПЗУ обойтись никак нельзя.

Кроме всего прочего, старт системы запускается с режима тестирования оборудования (команды BIOS), а только потом управление передается загружаемой операционной системе.

Как проверить, работает ли процессор?

Теперь посмотрим на некоторые аспекты проверки работоспособности процессора. Нужно четко понимать, что, если бы процессор не работал, компьютер бы не смог начать загрузку вообще.

Другое дело, когда требуется посмотреть на показатель использования возможностей процессора в определенный момент. Сделать это можно из стандартного «Диспетчера задач» (напротив любого процесса указано, сколько процентов загрузки процессора он дает). Для визуального определения этого параметра можно воспользоваться вкладкой производительности, где отслеживание изменений происходит в режиме реального времени. Расширенные параметры можно увидеть при помощи специальных программ, например, CPU-Z.

Кроме того, можно задействовать несколько ядер процессора, используя для этого (msconfig) и дополнительные параметры загрузки.

Возможные проблемы

Наконец, несколько слов о проблемах. Вот многие пользователи часто спрашивают, мол, почему процессор работает, а монитор не включается? К центральному процессору эта ситуация не имеет никакого отношения. Дело в том, что при включении любого компьютера сначала тестируется графический адаптер, а только потом все остальное. Возможно, проблема состоит как раз в процессоре графического чипа (все современные видеоускорители имеют собственные графически процессоры).

Но на примере функционирования человеческого организма нужно понимать, что в случае остановки сердца умирает весь организм. Так и с компьютерами. Не работает процессор - «умирает» вся компьютерная система.

Все о процессорах, ядрах, частоте и т.д.

Центральный процессор (CPU) – деталь компьютера, ответственная за интерпретацию и выполнение большинства команд других аппаратных и программных компонентов компьютера.

Во всех устройствах используется процессор, в десктопах, ноутбуках, планшетах, смартфонах … даже в вашем плоском телевизоре.

Intel и AMD – два самых известных производителей центральных процессоров для десктопов, ноутбуков и серверов, а Apple, NVIDIA, и Qualcomm – крупнейшие фирмы, изготавливающие процессоры для смартфонов и планшетов.

Вы можете встретить разные термины, обозначающие процессор, это центральное процессорное устройства, компьютерный процессор, микропроцессор, центральный процессор и «мозг компьютера».

Мониторы или жесткие диски иногда очень неправильно называют процессорами, но эти аппаратные компоненты выполняют совершенно другие функции, совсем не те, что процессор.

Как выглядит процессор и где он расположен

Современные процессоры обычно имею небольшой размер и квадратную форму, с большим количеством коротких, круглых, металлических коннекторов снизу. В более старых процессорах вместо коннекторов используются штырьки.

Процессор устанавливается в процессорный «разъем» (или иногда «слот») на материнской плате. Процессор в разъем вставляется коннектором вниз и фиксируется небольшим рычагом.

Современные процессоры сильно нагреваются, даже если работали непродолжительное время. Чтобы рассеять это тепло, практически всегда необходимо поставить непосредственно на процессор радиатор и вентилятор.

Обычно они включены в комплект при покупке.

Имеются и другие, более производительные системы охлаждения, например, комплекты водяного охлаждения или устройства, работающие на принципе фазового перехода.

Как уже говорилось ранее, не у всех процессоров имеется коннектор на нижней части, но, если он есть, его выводы очень легко погнуть. Будьте осторожны, особенно при установке его на материнскую плату.

Частота процессора

Частота процессора – количество команд, которое он может обработать за секунду и измеряется в гигагерцах (ГГц).

Например, частота процессора составляет 1 Гц, если за секунду он может обработать одну команду. Более реальный пример – процессор с частотой 3 ГГц может обработать 3 миллиарда операций за каждую секунду.

Ядра процессора

У некоторых устройств процессор с одним ядром, тогда как в других могут использоваться процессоры с двумя (или четырьмя) ядрами. Как уже понятно, два параллельно работающих процессора означает, что они смогут обработать за секунду в два раза больше команд, сильно увеличивая производительность устройства.

Некоторые процессоры способны разделять каждое физическое ядро на два виртуальных, такая технология называется Hyper-Threading. Подобная виртуализация означает, что процессор, в котором только четыре ядра, может работать так, как будто их восемь, и каждый виртуальный процессор обрабатывает отдельный поток команд. Однако физические процессоры имеют лучшую производительность, чем виртуальные .

Если позволяет процессор, некоторые приложения могут использовать так называемую многопоточность . Если рассматривать поток как отдельную часть процесса, то использование нескольких потоков в одном ядре процессора означает, что одновременно будет обрабатываться больше команд.

В некоторых программных продуктах используется подобное преимущество на нескольких ядрах процессора, что означает еще большее количество одновременно обработанных команд.

Пример: Intel Core i3 vs. i5 vs. i7

В качестве более конкретного примера того, что одни процессоры быстрее других, давайте рассмотрим, как разрабатывает свои процессоры компания Intel.

Как вы уже подозреваете по названиям, процессоры Intel Core i7 работают быстрее, чем i5, которые, в свою очередь, работают быстрее процессоров i3. Вопрос, почему одни процессоры лучше или хуже других немного сложнее, но все-таки имеет довольно понятное объяснение.

Процессоры Intel Core i3 – двухъядерные, а i5 и i7 имеют по четыре ядра.

Turbo Boost – функция процессоров i5 и i7, позволяющая им поднимать свою частоту выше номинальной, например, с 3.0 ГГц до 3.5 ГГц, когда это необходимо. У процессоров Intel Core i3 такой возможности нет. Процессоры, в названии которых последняя буква – «K» можно разгонять , то есть повышать их частоту и использовать ее все время работы.

Технология Hyper-Threading, как уже говорилось ранее, позволяет обрабатывать два потока в каждом ядре процессора. Это означает, что процессоры i3 с технологией Hyper-Threading могут обрабатывать лишь четыре потока одновременно (так как у них два ядра). Процессоры Intel Core i5 не поддерживают технологию Hyper-Threading, поэтому они могут одновременно работать с четырьмя потоками. Процессоры i7, однако, поддерживают эту технологию, и поэтому (так как они четырёхъядерные) могут одновременно обрабатывать 8 потоков.

Из-за ограничений по мощности источника питания, накладываемых устройствами, не работающими постоянно подключенными к розеткам (с питанием от батареи, например, смартфоны, планшеты и пр.) процессоры – i3, i5, и i7 - отличаются от процессоров для настольных компьютеров тем, что имеют более сбалансированную производительность и потребляемую мощность.

Дополнительная информация о процессорах

Ни частота, ни количество ядер не являются единственным признаком, определяющим то, что один процессор «лучше» другого. Часто это больше зависит от типа программного обеспечения, работающего на данном компьютере – другими словами, приложениями, использующими процессор.

У одного процессора может быть низкая частота, но четыре ядра, тогда как другой может обладать высокой частотой, но только двумя ядрами. Решение, какой процессор будет работать лучше, опять же, зависит от того, для чего он будет использоваться.

Например, программа редактирования видео, зависящая от производительности процессора, будет работать лучше на процессорах с несколькими ядрами и небольшой частотой, чем на одноядерном процессоре с высокой частотой. Не все приложения, игры и другие программы используют преимущество наличия более одного или двух ядер у процессора, делая дополнительные ядра практически бесполезными.

Другой компонент процессора – кэш. Кэш процессора - это место временного хранения часто используемых данных. Вместо того, чтобы обращаться за этими данными к оперативной памяти (RAM), процессор определяет, какие данные, предположительно, еще будут использоваться, то есть вы захотите их использовать, и хранит из в кэше. Скорость обращения к кэшу быстрее, чем к оперативной памяти, так как является физической частью процессора; больший объем кэша означает, что для хранения подобных данных у процессора больше места.

Наличие 32-битной или 64-битной операционной системы на вашем компьютере определяет размер блоков данных, которые сможет обрабатывать процессор. С 64-битный процессор обращается с большим объемом памяти, чем 32-битный, вот почему 64-битные операционные системы и приложения не могут работать на 32-битном процессоре.

Вы сможете посмотреть подробную информацию о процессоре и других аппаратных компонентах вашего компьютера с помощью этих бесплатных информационных приложений

Каждая материнская плата поддерживает только определенную линейку типов процессоров, поэтому перед покупкой всегда проверяй это у производителя вашей материнской платы.

20. 02.2017

Блог Дмитрия Вассиярова.

Что такое процессор компьютера — все точки над i

Доброго времени суток дорогой читатель.

Каждый современный человек слышал о компьютерных процессорах, но не все понимают, как они выглядят и для чего предназначены. Вы относитесь к числу таких людей? Тогда вам непременно стоит прочитать эту статью. Ведь знание того, что такое процессор компьютера, поможет вам в его выборе. Именно от этого будет зависеть, насколько быстро вы сможете работать с тем или иным программным обеспечением.

В данной статье я не буду углубляться в историю, а буду отталкиваться от понятия современных процессоров.

Разъяснение термина

Процессор - главный элемент компьютера, который предназначен для определения его возможностей в обработке информации.

Другими словами, это микросхема, руководящая всеми устройствами вашего девайса и выполнением любых его задач. Тем, насколько быстро она может обрабатывать данные, определяется мощность и производительность компа.

В целом, компьютер содержит много небольших процессоров (чипов), каждый из которых отвечает за отдельный элемент, например, видеокарту и пр. Однако главным из них является тот, который контролирует системную шину, оперативную память и самое важное - выполнение объектного кода программ.

Он называется «центральный процессор». Синонимом к этому понятию выступает английская аббревиатура CPU (Central Point Unit — в переводе что то типа «Центральный Вычислительный Пункт»).
От чего зависит производительность?

Самые важные характеристики процессора это:

  1. , исчисляемая в гигагерцах (GHz).
    Она представляет собой количество операций, который компьютер способен выполнять за секунду. Чем больше их число, тем быстрее он будет работать.

  2. Указывающая на то, какие приложения может поддерживать комп: 32-х или 64-битные. Как правило, все современные процессоры относятся ко второму варианту. От этого параметра зависит и количество оперативной памяти, так как у 32-битных систем ее до 4 Гб, а у 64-битных - выше 4 Гб.
  3. или иными словами память процессора.
    Тоже очень важный параметр влияющий на скорость работы. служит для уменьшения времени доступа к основной памяти (ОЗУ). В основном бывает несколько уровней кэша — L1, L2, L3. соответственно чем больше размер кэша и чем больше уровней, тем быстрее проц выполняет сложные операции типа архивирования, рендеринга и т.п.
  4. Количество ядер.
    — это отдельная вычислительная единица. Грубо говоря если проц двух ядерный то это означает что под одной крышкой в нём трудятся два процессора (два кристала). В общем чем больше ядер тем лучше (тем он быстрее).

Вид снаружи и внутри

Думаете, такой важный «орган» должен иметь внушительный вид? Это не так. Процессор представляет собой небольшую пластину в несколько квадратных миллиметров прямоугольной формы, на которую нанесены схемы. Чтобы избежать повреждений, ее помещают в корпус из металла. К системной плате пластина присоединяется маленькими ножками золотого цвета с металлическими штырьками.

Процессор компьютера в разрезе выглядит так: подложка на которой установлен сам кристалл изготовленный из кремния (он то и отвечает за все вычисления), далее на кристалл наносят термоинтерфейс и закрывают это всё крышкой, которая в дальнейшем будет контактировать с пяткой кулера.

Сам кристалл в не припаянном состоянии имеет примерно следующее обличие:

Где находится в компьютере?

Вы задаетесь вопросом, как узнать какой процессор стоит у меня на компьютере? Не обязательно его разбирать, чтобы найти нужные данные.

Для этого достаточно нажать кнопку «Пуск», перейти в «Панель управления», выбрать раздел «Система» и перед вами появится окно, где написано название и частота проца (это если у вас на компе стоит Windows).

Если все-таки необходимо достать устройство, то разберемся с его местоположением.

Вы чувствовали, что ваш ноутбук или системный блок в определенном месте нагревается сильнее? В той части и располагается сам процессор. От перегреваний он защищен кулером (радиатором с вентилятором). Располагается на материнской плате, в основном в центре на так называемом «соккете» (Socket). Socket — это некий разъём на который могут устанавливаться только определённые процы подходящие под него.

Если вы решите разобрать комп в поиске микросхемы, вам необходимо крайне аккуратно снять охлаждающее устройство, и под ним вы найдете искомую вещь. Если хотите ее снять, осторожно отстегните фиксаторы кулера на материнской плате держащие сам подложку проца.

Разница между Intel и AMD

Долго время основными производителями процессоров остаются компании Intel и AMD. Несмотря на такое ограниченное количество ведущих фирм, большинство людей теряются в выборе. Чтобы понять, какой проц подойдет именно в вашем случае, я расскажу о главных различиях между ними.

Первые отличаются высокой производительностью, но за это вам придется выложить немалые средства, если вы захотите топовый процессор от Intel.

Вторые обладают примерно одинаковой скоростью обработки данных и стоят намного дешевле, но у них есть один большой недостаток — тепловыделение намного сильнее.

Но это не значит, что они быстро выходят из строя или выполняют меньше функций. В основном продукцию фирмы AMD берут для игр, а если нужны сложные вычисления типа рендеринга, создание 3D моделей и т.п. то здесь рынок выбирает Intel.

Но это как говорится «статистика», оба производителя создают качественные кристаллы и ничего не случится если вы купите какой нибудь FX от AMD к примеру для видео монтажа. Как говорится дело вкусов.

На этом я думаю пора заканчивать, статья конечно получилась кратенькая, возможно как нибудь копнём поглубже в этой теме:-). Но я думаю базовые моменты описал и надеюсь понятно.

До скорых встреч друзья, подписывайтесь на обновления блога.