Чем суть интегральной схемы. Микросхемы

1 Интегральные микросхемы (ИС)

Основной базой современной дискретной механики является интегральная микроэлектроника. Переход к ИС существенно изменил способы построения электронной аппаратуры, поскольку изделия микросхематехники представляют собой законченные функциональные узлы, будь то логические элементы для выполнения простейших операций или процессоры вычислительных машин, состоящие из многих тысяч элементов.

1.Терминология

В соответствии с ГОСТ17021-88 «Микросхемы интегральные. Термины и определения».

Интегральная микросхема (ИС ) – микроэлектронное изделие, выполняющее определенную функцию преобразования и обработки сигнала и имеющее высокую плотность упаковки электрически соединенных элементов (или элементов и компонентов) и (или) кристаллов, которое с точки зрения требований к испытаниям, приемке, поставке и эксплуатации рассматривается как единое целое.

Полупроводниковая интегральная микросхема – интегральная микросхема, все элементы и межэлементные соединения которой выполнены в объеме и на поверхности полупроводника.

Пленочная интегральная микросхема – интегральная микросхема, все элементы и межэлементные соединения которой выполнены в виде пленок (частным случаем, пленочных ИС являются толстопленочные и тонкопленочные ИС).

Гибридная интегральная микросхема – интегральная микросхема, содержащая кроме элементов компоненты и (или) кристаллы (частным случаем гибридной ИС является многокристальная ИС).

Тонкопленочная технология – основные материалы:

Подложка - для нанесения и создания рисунка схемы (ситалл, керамика);

Проводящая пленка – медь, алюминий, золото;

Резистивный материал – металлы и их сплавы, оксид олова, диэлектрики, смеси.

Толстопленочные – в основном качестве коммутационных, плат.

В настоящее время существуют интегральные микросхемы 6-ти степеней интеграции (таблица 1).

Малая интегральная микросхема (МИС) - ИС, содержащая до 100 элементов и (или) компонентов включительно (1..2 степень).

Средняя интегральная микросхема (СИС ) - ИС, содержащая свыше 100 до 1000 элементов и (или) компонентов для цифровых ИС и свыше 100 до 500 – для аналоговых (2..3 степень).

Большая интегральная микросхема (БИС) - ИС, содержащая свыше 1000 элементов и (или) компонентов для цифровых ИС и свыше 500 – для аналоговых ИС (3..4 степень).

Сверхбольшая интегральная микросхема (СБИС) - ИС, содержащая свыше 100000 элементов и (или) компонентов для цифровых ИС с регулярной структурой построения, свыше 50000 – для цифровых ИС с нерегулярной структурой построения, и свыше 10000 – для аналоговых ИС (5..7 степень).

Примечание: К цифровым ИС с регулярной структурой построения относят схемы запоминающих устройств и схемы на основе базовых матричных сигналов, с нерегулярной структурой построения схемы вычислительных средств.

Сверхскоростная интегральная микросхема (ССИС ) – цифровая ИС, функциональное быстродействие которой не менее 1*10 13 Гц/см 3 на один логический элемент.

Под функциональным быстродействием понимают произведение рабочей частоты логического элемента, равно обратному учетверенному значению максимальному среднего времени задержки распространения сигнала на число логических элементов, приходящихся на 1 квадратный сантиметр площади кристалла.

3 Классификация интегральных схем по уровням интеграции.

Таблица 1 - Классификация ИС по уровням интеграции

Сте- Уровень Число элементов и компонентов в одной микросхеме

пень интег- Цифровые микросхемы Аналоговые

интег- рации на МОП- на биполярных микросхемы

рации транзисторах транзисторах

1..2 МИС <= 100 <= 100 <= 100

2..3 CИС > 100 <= 1000 > 100 <= 500 > 100 <= 500

3..4 БИС > 1000 <= 10000 > 500 <= 2000 > 500

4..5 СБИС > 100000 > 50000 > 10000

Аналоговая интегральная микросхема - интегральная микросхема, предназначенная для преобразования и обработки сигналов по закону непрерывной функции (частным случаем аналоговой ИС являются микросхема с линейной характеристикой - линейная ИС).

Цифровая ИС - интегральная микросхема, предназначенная для преобразования и обработки сигналов, изменяющихся по закону дискретной функции (частным случаем цифровой ИС является логическая микросхема)

Степень интеграции интегральной микросхемы – показатель степени сложности микросхемы, характеризуемый числом содержащихся в ней элементов и компонентов.

Определяется по формуле: k=lgN,

где k – коэффициент, определяющий степень интеграции, округляемый до ближайшего большего целого числа.

N – число элементов и компонентов, входящих в интегральную микросхему.

Серия интегральных микросхем - совокупность типов интегральных микросхем, которые могут выполнять различные функции, имеют единое конструктивно-технологическое исполнение и предназначены для совместного применения.

На низшем, нулевом уровне конструктивной иерархии ЭВА любого типа и назначения находятся ИС, выполняющие логические, вспомогательные, специальные функции, а также функции запоминания. В настоящее время промышленностью выпускается большое количество интегральных схем, которые можно классифицировать по ряду признаков.

2 Классификация микросхем и условные обозначения

В зависимости от технологии изготовления ИС делятся на 4 разновидности: полупроводниковые; пленочные; гибридные; совмещенные

Элементы электрической схемы полупроводниковых ИС формируют в объеме или на поверхности полупроводникового материала (подложки). Формирование активных и пассивных элементов введением определенным образом концентрации примесей с различным числом монокристаллической пластины.

Рисунок 1 – Классификация интегральных схем

В гибридных ИС пассивную часть выполняют в виде пленок, наносимых на поверхность диэлектрического материала (подложки), а активные элементы, имеющие самостоятельное конструктивное оформление, - крепят к поверхности подложки.

В зависимости от методов подсоединения активных бескорпусных элементов, активные ИС бывают с гибкими и жесткими выводами.

Разновидностью полупроводниковых ИС являются совмещенные ИС.

В совмещенных ИС активные элементы выполняются внутри полупроводниковой подложки, а пассивная часть – в виде металлических пленок на ее поверхность.

По функциональному назначению ИС можно разделить на:

1) цифровые; 2) аналоговые.

Цифровые ИС используют в ЦВМ, устройствах дискретной автоматики и т.д. К ним принадлежат микропроцессорные схемы, схемы памяти и ИС, выполняющие логические функции.

Линейные и линейно-импульсные ИС применяются в аналоговых вычислительных машинах и в устройствах преобразования информации.

К ним относятся различные операционные усилители, компараторы и другие схемы.

В основу классификации цифровых микросхем положены три признака:

1)вид компонентов логической схемы, на которых выполняются логические операции над входными переменными;

2)способ соединения полупроводниковых приборов в логическую схему;

3)вид связи между логическими схемами.

По этим признакам логические ИС можно классифицировать следующим образом:

1) схемы с непосредственными связями на МОП-структурах – НСТЛМ (МОП – металл – окисел - полупроводник или МДП металл-диэлектрик - полупроводник).

2)схемы с резисторно - емкостными связями – РТЛ; РЕТЛ – схемы, входная логика которых осуществляется на резисторных цепях. РЕТЛ и РТЛ – морально устарели и в новых разработках не используются;

3)схемы, входная логика которых осуществляется на диодах – ДТЛ;

4 схемы, входная логика которых выполняется многоэмитторным транзистором – ТТЛ;

5) схемы, со связанными эмиттерами – ЭСЛ, или ПТТЛ – логика на переключателях тока;

6) инжекционно-интегральная логика ИИЛ или И 2 Л – на ее основе создаются микросхемы большой степени интеграции высокого быстродействия и с малым потреблением энергии;

7) схемы, основанные на совместном включении пары транзисторов с каналами разных видов проводимости, так называемые комплиментарные структуры. (КМОП – структуры).

В условном обозначении ИС конструктивно-технологическое исполнение обозначаются цифрой:

    1 ,5 ,6 ,7 – полупроводниковые; 2 ,4 ,8 – гибридные;

    3 прочие – (пленочные, вакуумные и т.д.).

По характеру выполнения функций в РЭА ИС подразделяются на подгруппы (например, генераторы, усилители и т.д.) и виды (например, преобразователи частоты, фазы, напряжения) подгруппа обозначается соответствующими буквами, (например ГС-генератор (Г) гармонических сигналов (С), НД-набор (Н) диодов (Д))

4 Корпуса микросхем

В ГОСТ 17467-88 приведены термины, касающиеся конструктива ИС.

Тело корпуса – часть корпуса без выводов.

Позиция вывода – одно из нескольких равноотстоящих друг от друга место положений выводов на выходе из тела корпуса, расположенных по окружности или в ряду, которое может быть занято или не занято выводом. Каждая позиция вывода обозначается порядковым номером.

Установочная плоскость – плоскость, на которую устанавливается ИС.

В ранних электрических компьютерах компонентами схемы, выполнявшими операции, были вакуумные трубки. Эти трубки, напоминавшие электрические лампочки, потребляли много электроэнергии и вьщеляли много тепла. Все изменилось в 1947 году с изобретением транзистора. В этом маленьком устройстве использовался полупроводниковый материал, названный так за способность как проводить, так и задерживать электрический ток, в зависимости от того, есть ли электрический ток в самом полупроводнике. Эта новая технология позволила строить все виды электрических переключателей на кремниевых микросхемах. Схемы на транзисторах занимали меньше места и потребляли меньше энергии. Для более мощных компьютеров были созданы интегральные схемы, или ИС.

В наше время транзисторы стали микроскопически малы, и вся цепь ИС помещается на кусочке полупроводника площадью 1 дюйм квадратный. Маленькие блоки, рядами смонтированные на печатной плате компьютера, и есть интегральные схемы, заключенные в пластиковые корпуса. Каждая микросхема содержит набор простейших элементов схемы, или устройств. Большую их часть занимают транзисторы. ИС может также включать диоды, которые позволяют электрическому току идти только в одном направлении, и резисторы, которые блокируют ток.
Неподвижные части. Во внутренних отделах компьютера ряды интегральных схем в защитных корпусах, как показано внизу, смонтированы на печатной плате компьютера (зеленый цвет). Каждая бледно-зеленая линия обозначает дорожку, по которой идет электрический ток; все вместе они образуют «магистрали», по которым от схемы к схеме проводится электрический ток.

Крошечные связные. По краю микросхемы сильно намагниченные проводки, напоминающие человеческие волоски, посылают электрические сигналы от электрической цепи (им. сверху). Эти золотые или алюминиевые проводки практически не подвержены коррозии и хорошо проводят электричество.

Анатомия транзистора
Транзисторы - основные микроскопические элементы электронной схемы - это переключатели, которые включают и выключают электрический ток. Маленькие металлические дорожки (серый цвет) проводят ток (красный и зеленый цвета) из этих устройств. Организованные в комбинацию, называемую логическими «воротами» (логической схемой), транзисторы реагируют на электрические импульсы разнообразными предустановленными способами, позволяя компьютеру выполнять широкий спектр задач.

Логическая схема. В случае если поступающий электрический ток (красные стрелки) активизирует базу каждого транзистора, питающий ток (зеленые стрелки) устремится к проводку вывода.

Интегральная схема (микросхема) – миниатюрное электронное устройство, состоящее из большого количества радиоэлектронных элементов, конструктивно и электрически связанных между собой. Обычно интегральная схема создается для выполнения конкретной функции. По сути, микросхема объединяет в себе какую-то электронную схему, где все элементы (транзисторы , диоды , резисторы, конденсаторы) и электрические связи между ними конструктивно выполнены на одном кристалле. Поскольку размеры отдельных компонентов очень малы (микро- и нанометры), то на одном кристалле при современном развитии технологий, можно поместить более миллиона электронных компонентов.

У понятия интегральная схема есть несколько синонимов: микросхема, микрочип, чип. Несмотря на некоторую особенность определения этих терминов и разницу между ними, в обиходе все они применяются для обозначения интегральной схемы. В современных электронных устройствах самых различных сфер применения, начиная от бытовых приборов и заканчивая сложными медицинскими и научными электроприборами, сложно найти прибор, в котором бы не применялись интегральные схемы. Иногда одна микросхема выполняет практически все функции в электронном приборе.

Интегральные схемы делятся на группы по нескольким критериям. По степени интеграции – количеству элементов, размещенных на кристалле. По типу обрабатываемого сигнала: цифровые, аналоговые и аналого-цифровые. По технологии их производства и используемых материалов – полупроводниковые, пленочные и т.д.

На сегодняшний день уровень развития технологий при производстве интегральных схем находится на очень высоком уровне. Повышения степени интеграции, улучшение параметров интегральных схем тормозится не технологическими ограничениями, а процессами, происходящими на молекулярном уровне в используемых для производства материалах (обычно полупроводниках). Поэтому исследования производителей и разработчиков микрочипов ведутся в направлении поиска новых материалов, которые смогли бы заменить

Первые интегральные схемы

50-летию официальной даты посвящается

Б. Малашевич

12 сентября 1958 года сотрудник фирмы Texas Instruments (TI) Джек Килби продемонстрировал руководству три странных прибора - склеенные пчелиным воском на стеклянной подложке устройства из двух кусочков кремния размером 11,1?1,6 мм (рис.1). Это были объёмные макеты – прототипы интегральной схемы (ИС) генератора, доказывающие возможность изготовления всех элементов схемы на основе одного полупроводникового материала. Эта дата отмечается в истории электроники как день рождения интегральных схем. Но так ли это?

Рис. 1. Макет первой ИС Дж. Килби. Фото с сайта http://www.computerhistory.org/semiconductor/timeline/1958-Miniaturized.html

К концу 1950-х годов технология сборки радиоэлектронной аппаратуры (РЭА) из дискретных элементов исчерпала свои возможности. Мир пришёл к острейшему кризису РЭА, требовались радикальные меры. К этому моменту в США и СССР уже были промышленно освоены интегральные технологии производства, как полупроводниковых приборов, так и толстоплёночных и тонкопленочных керамических плат, т. е. созрели предпосылки для выхода из этого кризиса путем создания многоэлементных стандартных изделий – интегральных схем.

К интегральным схемам (микросхемам, ИС) относятся электронные устройства различной сложности, в которых все однотипные элементы изготавливаются одновременно в едином технологическом цикле, т.е. по интегральной технологии. В отличие от печатных плат (в которых в едином цикле по интегральной технологии одновременно изготавливаются все соединительные проводники) в ИС аналогично формируются и резисторы, и конденсаторы, и (в полупроводниковых ИС) диоды и транзисторы. Кроме того, одновременно изготавливается много ИС, от десятков, до тысяч.

ИС разрабатываются и выпускаются промышленностью в виде серий, объединяющий ряд микросхем различного функционального назначения, предназначенных для совместного применения в электронной аппаратуре. ИС серии имеют стандартное конструктивное исполнение и единую систему электрических и иных характеристик. ИС поставляются производителем разным потребителям как самостоятельная товарная продукция, удовлетворяющая определенной системе стандартизованных требований. ИС относятся к неремонтируемым изделиям, при ремонте РЭА вышедшие из строя ИС заменяются.

Различают две основные группы ИС: гибридные и полупроводниковые.

В гибридных ИС (ГИС) на поверхности подложки микросхемы (как правило, из керамики) по интегральной технологии формируются все проводники и пассивные элементы. Активные элементы в виде бескорпусных диодов, транзисторов и кристаллов полупроводниковых ИС, устанавливаются на подложку индивидуально, вручную или автоматами.

В полупроводниковых ИС соединительные, пассивные и активные элементы формируются в едином технологическом цикле на поверхности полупроводникового материала (обычно кремния) с частичным вторжением в его объём методами диффузии. Одновременно на одной пластине полупроводника, в зависимости от сложности устройства и размеров его кристалла и пластины, изготавливается от нескольких десятков до нескольких тысяч ИС. Промышленность полупроводниковые ИС выпускает в стандартных корпусах, в виде отдельных кристаллов или в виде неразделенных пластин.

Явление миру гибридных (ГИС) и полупроводниковых ИС происходило по-разному. ГИС является продуктом эволюционного развития микромодулей и технологии монтажа на керамических платах. Поэтому появились они незаметно, общепринятой даты рождения ГИС и общепризнанного автора не существует. Полупроводниковые ИС были естественным и неизбежным результатом развития полупроводниковой техники, но потребовавшим генерации новых идей и создания новой технологии, у которых есть и свои даты рождения, и свои авторы. Первые гибридные и полупроводниковые ИС появились в СССР и США почти одновременно и независимо друг от друга.

Первые гибридные ИС

К гибридным относятся ИС, в производстве которых сочетается интегральная технология изготовления пассивных элементов с индивидуальной (ручной или автоматизированной) технологией установки и монтажа активных элементов.

Еще в конце 1940-х годов в фирме Centralab в США были разработаны основные принципы изготовления толстоплёночных печатных плат на керамической основе, развитые затем другими фирмами. В основу были положены технологии изготовления печатных плат и керамических конденсаторов. От печатных плат взяли интегральную технологию формирования топологии соединительных проводников – шелкографию. От конденсаторов – материал подложки (керамика, чаще ситал), а также материалы паст и термическую технологию их закрепления на подложке.

А в начале 1950-х годов в фирме RCA изобрели тонкоплёночную технологию: распыляя в вакууме различные материалы и осаждая их через маску на специальные подложки, научились на единой керамической подложке одновременно изготавливать множество миниатюрных плёночных соединительных проводников, резисторов и конденсаторов.

По сравнению с толстоплёночной, тонкоплёночная технология обеспечивала возможность более точного изготовления элементов топологии меньших размеров, но требовала более сложного и дорогостоящего оборудования. Устройства, изготавливаемые на керамических платах по толстоплёночной или тонкоплёночной технологии, получили название “гибридные схемы”. Гибридные схемы выпускались как комплектующие изделия собственного производства, их конструкция, размеры, функциональное назначение у каждого изготовителя были свои, на свободный рынок они не попадали, а потому мало известны.

Вторглись гибридные схемы и в микромодули. Сначала в них применялись дискретные пассивные и активные миниатюрные элементы, объединённые традиционным печатным монтажом. Технология сборки была сложной, с огромной долей ручного труда. Поэтому микромодули были весьма дорогими, их применение было ограничено бортовой аппаратурой. Затем применили толстопленочные миниатюрные керамические платки. Далее по толстопленочной технологии начали изготавливать резисторы. Но диоды и транзисторы использовались ещё дискретные, индивидуально корпусированные.

Гибридной интегральной схемой микромодуль стал в тот момент, когда в нём применили бескорпусные транзисторы и диоды и герметизировали конструкцию в общем корпусе. Это позволило значительно автоматизировать процесс их сборки, резко снизить цены и расширить сферу применения. По методу формирования пассивных элементов различают толстоплёночные и тонкоплёночные ГИС.

Первые ГИС в СССР

Первые ГИС (модули типа “Квант” позже получившие обозначение ИС серии 116) в СССР были разработаны в 1963 г. в НИИРЭ (позже НПО “Ленинец”, Ленинград) и в том же году его опытный завод начал их серийное производство. В этих ГИС в качестве активных элементов использовались полупроводниковые ИС “Р12- 2” , разработанные в 1962 г. Рижским заводом полупроводниковых приборов. В связи с неразрывностью историй создания этих ИС и их характеристик, мы рассмотрим их вместе в разделе, посвященном Р12-2.

Бесспорно, модули “Квант” были первыми в мире ГИС с двухуровневой интеграцией – в качестве активных элементов в них использовались не дискретные бескорпусные транзисторы, а полупроводниковые ИС. Вполне вероятно, что они вообще были и первыми в мире ГИС – конструктивно и функционально законченными многоэлементными изделиями, поставляемыми потребителю как самостоятельная товарная продукция. Самым ранним из выявленных автором зарубежных подобных изделий являются ниже описанные SLT -модули корпорации IBM , но они были анонсированы в следующем, 1964 г.

Первые ГИС в США

Появление толстоплёночных ГИС, как основной элементной базы новой ЭВМ IBM System /360, впервые было анонсировано корпорации IBM в 1964 г. Похоже, что это было первое применение ГИС за пределами СССР, более ранних примеров автору обнаружить не удалось.

Уже известные в то время в кругах специалистов полупроводниковые ИС серий “Micrologic” фирмы Fairchild и " SN -51" фирмы TI (о них мы скажем ниже) были ещё недоступно редки и непозволительно дороги для коммерческого применения, каким было построение большой ЭВМ. Поэтому корпорация IBM , взяв за основу конструкцию плоского микромодуля, разработала свою серию толстоплёночных ГИС, анонсированную под общим названием (в отличие от “микромодулей”) – “ SLT -модули” (Solid Logic Technology – технология цельной логики. Обычно слово “s olid ” переводят на русский язык как “твёрдый”, что абсолютно нелогично. Действительно, термин “ SLT -модули” был введен IBM как противопоставление термину “микромодуль” и должен отражать их отличие. Но оба модуля “твёрдые”, т. е. этот перевод не годится. У слова “ solid ” есть и другие значения – “сплошной”, “целый”, которые удачно подчеркивают различие “ SLT -модулей” и “микромодулей” – SLT -модули неделимы, неремонтопригодны, т. е. “целые”. Поэтому мы и использовали не общепринятый перевод на русский язык: Solid Logic Technology – технология цельной логики).

SLT -модуль представлял собой квадратную керамическую толстоплёночную микроплатку полудюймового размера с впрессованными вертикальными штыревыми выводами. На её поверхность методом шелкографии наносились (согласно схеме реализуемого устройства) соединительные проводники и резисторы, и устанавливались бескорпусные транзисторы. Конденсаторы, при необходимости, устанавливались рядом с SLT -модулем на плате устройства. При внешней почти идентичности (микромодули несколько повыше, рис. 2.) SLT -модули от плоских микромодулей отличались более высокой плотностью компоновки элементов, низким энергопотреблением, высоким быстродействием и высокой надёжностью. Кроме того, SLT -технология достаточно легко автоматизировалась, следовательно их можно было выпускать в огромных количествах при достаточно низкой для применения в коммерческой аппаратуре стоимости. Именно это IBM и было нужно. Фирма построила для производства SLT -модулей автоматизированный завод в East Fishkill близ Нью-Йорка, который выпускал их миллионными тиражами.

Рис. 2. Микромодуль СССР и SLT-модуль ф. IBM. Фото STL с сайта http://infolab.stanford.edu/pub/voy/museum/pictures/display/3-1.htm

Вслед за IBM ГИС начали выпускать и другие фирмы, для которых ГИС стала товарной продукцией. Типовая конструкция плоских микромодулей и SLT -модулей корпорации IBM стала одним из стандартов для гибридных ИС.

Первые полупроводниковые ИС

К концу 1950-х годов промышленность имела все возможности для производства дешёвых элементов электронной аппаратуры. Но если транзисторы или диоды изготовлялись из германия и кремния, то резисторы и конденсаторы делали из других материалов. Многие тогда полагали, что при создании гибридных схем не будет проблем в сборке этих элементов, изготовленных по отдельности. А если удастся изготовить все элементы типового размера и формы и тем самым автоматизировать процесс сборки, то стоимость аппаратуры будет значительно снижена. На основании таких рассуждений сторонники гибридной технологии рассматривали её как генеральное направление развития микроэлектроники.

Но не все разделяли это мнение. Дело в том, что уже созданные к тому периоду меза-транзисторы и, особенно, планарные транзисторы, были приспособлены для групповой обработки, при которой ряд операций по изготовлению многих транзисторов на одной пластине-подложке осуществлялись одновременно. Т. е. на одной полупроводниковой пластине изготавливалось сразу множество транзисторов. Затем пластина разрезалась на отдельные транзисторы, которые размещались в индивидуальные корпуса. А затем изготовитель аппаратуры объединял транзисторы на одной печатной плате. Нашлись люди, которым такой подход показался нелепым – зачем разъединять транзисторы, а потом снова объединять их. Нельзя ли их объединить сразу на полупроводниковой пластине? При этом избавиться от нескольких сложных и дорогостоящих операций! Эти люди и придумали полупроводниковые ИС.

Идея предельно проста и совершенно очевидна. Но, как часто бывает, только после того, как кто-то первым её огласил и доказал. Именно доказал, просто огласить часто, как и в данном случае, бывает недостаточно. Идея ИС была оглашена еще в 1952 г., до появления групповых методов изготовления полупроводниковых приборов. На ежегодной конференции по электронным компонентам, проходившей в Вашингтоне, сотрудник Британского королевского радиолокационного управления в Малверне Джеффри Даммер представил доклад о надёжности элементов радиолокационной аппаратуры. В докладе он сделал пророческое утверждение: “ С появлением транзистора и работ в области полупроводниковой техники вообще можно себе представить электронное оборудование в виде твердого блока, не содержащего соединительных проводов. Блок может состоять из слоев изолирующих, проводящих, выпрямляющих и усиливающих материалов, в которых определенные участки вырезаны таким образом, чтобы они могли непосредственно выполнять электрические функции” . Но этот прогноз остался специалистами незамеченным. Вспомнили о нём только после появления первых полупроводниковых ИС, т. е. после практического доказательства давно оглашенной идеи. Кто-то должен был первым вновь сформулировать и реализовать идею полупроводниковой ИС.

Как и в случае с транзистором, у общепризнанных создателей полупроводниковых ИС были более или менее удачливые предшественники. Попытку реализовать свою идею в 1956 г. предпринял сам Даммер, но потерпел неудачу. В 1953 г. Харвик Джонсон из фирмы RCA получил патент на однокристальный генератор, а в 1958 г. совместно с Торкелом Валлмарком анонсировал концепцию “полупроводникового интегрального устройства”. В 1956 году сотрудник фирмы Bell Labs Росс изготовил схему двоичного счётчика на основе n-p-n-p структур в едином монокристалле. В 1957 г. Ясуро Тару из японской фирмы MITI получил патент на соединение различных транзисторов в одном кристалле. Но все эти и другие им подобные разработки имели частный характер, не были доведены до производства и не стали основой для развития интегральной электроники. Развитию ИС в промышленном производстве способствовали только три проекта.

Удачливыми оказались уже упомянутый Джек Килби из Texas Instruments (TI), Роберт Нойс из Fairchild (оба из США) и Юрий Валентинович Осокин из КБ Рижского завода полупроводниковых приборов (СССР). Американцы создали экспериментальные образцы интегральных схем: Дж. Килби – макет ИС генератора (1958 г.), а затем триггер на меза-транзисторах (1961 г.), Р. Нойс – триггер по планарной технологии (1961 г.), а Ю. Осокин – сразу пошедшую в серийное производство логическую ИС “2НЕ-ИЛИ” на германии (1962 г.). Серийное производство ИС эти фирмы начали почти одновременно, в 1962 г.

Первые полупроводниковые ИС в США

ИС Джека Килби. Серия ИС “ SN - 51”

В 1958 году Дж. Килби (пионер применения транзисторов в слуховых аппаратах) перешёл в фирму Texas Instruments. Новичка Килби, как схемотехника, “бросили” на усовершенствование микромодульной начинки ракет путём создания альтернативы микромодулям. Рассматривался вариант сборки блоков из деталей стандартной формы, подобный сборке игрушечных моделей из фигурок LEGO. О днако Килби увлекло иное. Решающую роль сыграл эффект “свежего взгляда”: во-первых, он сразу констатировал, что микромодули – тупик, а во-вторых, налюбовавшись меза-структурами, пришёл к мысли, что схему нужно (и можно) реализовать из одного материала – полупроводника. Килби знал об идее Даммера и его неудачной попытке её реализации в 1956 г. Проанализировав, он понял причину неудачи и нашел способ её преодоления. “ Моя заслуга в том, что взяв эту идею, я превратил её в реальность ” , сказал Дж. Килби позже в своей нобелевской речи.

Не заработав ещё права на отпуск, он без помех трудился в лаборатории, пока все отдыхали. 24 июля 1958 года Килби сформулировал в лабораторном журнале концепцию, получившую название “Идея монолита” (Monolithic Idea). Её суть заключалась в том, что “. ..элементы схемы, такие как резисторы, конденсаторы, распределенные конденсаторы и транзисторы, могут быть интегрированы в одну микросхему - при условии, что они будут выполнены из одного материала... В конструкции триггерной схемы все элементы должны изготавливаться из кремния, причём резисторы будут использовать объёмное сопротивление кремния, а конденсаторы - ёмкости p-n-переходов ” . “ Идея монолита” встретила снисходительно-ироничное отношение со стороны руководства Texas Instruments, потребовавшего доказательств возможности изготовления транзисторов, резисторов и конденсаторов из полупроводника и работоспособности собранной из таких элементов схемы.

В сентябре 1958 г. Килби реализовал свою идею – сделал генератор из склеенных пчелиным воском на стеклянной подложке двух кусочков германия размером 11,1 х 1,6 мм, содержащих диффузионные области двух типов (рис. 1). Эти области и имевшиеся контакты он использовал для создания схемы генератора, соединяя элементы тонкими золотыми проволочками диаметром 100 мкм путём термокомпрессионной сварки. Из одной области создавался мезатранзистор, из другой – RC-цепочка. Собранные три генератора были продемонстрированы руководству компании. При подключении питания они заработали на частоте 1,3 МГц. Это случилось 12 сентября 1958 года. Через неделю аналогичным образом Килби изготовил усилитель. Но это ещё не были интегральные структуры, это были объёмные макеты полупроводниковых ИС, доказывающие идею изготовления всех элементов схемы из одного материала – полупроводника.

Рис. 3. Триггер Type 502 Дж. Килби. Фото с сайта http://www.computerhistory.org/semiconductor/timeline/1958-Miniaturized.html

Первой действительно интегральной схемой Килби, выполненной в одном кусочке монолитного германия, оказалась экспериментальная ИС триггера “ Type 502” (рис. 3). В ней были использованы и объёмное сопротивление германия, и ёмкость p-n-перехода. Её презентация состоялась в марте 1959 года. Небольшое количество таких ИС было изготовлено в лабораторных условиях и продавалось в узком кругу по цене 450$. ИС содержала шесть элементов: четыре меза-транзистора и два резистора, размещённых на кремниевой пластине диаметром 1 см. Но ИС Килби имела серьёзный недостаток – меза-транзисторы, которые в виде микроскопических “активных” столбиков возвышались над остальной, “пассивной” частью кристалла. Соединение меза-столбиков друг с другом в ИС Килби осуществлялось развариванием тонких золотых проволочек – ненавистная всем “волосатая технология”. Стало ясно, что при таких межсоединениях микросхему с большим количеством элементов не сделать – проволочная паутина разорвется или перезамкнется. Да и германий в то время уже рассматривался как материал не перспективный. Прорыв не состоялся.

К этому времени в фирме Fairchild была разработана планарная кремниевая технология. Учитывая все это, Texas Instruments пришлось отложить всё сделанное Килби в сторонку и приступить, уже без Килби, к разработке серии ИС на основе планарной кремниевой технологии. В октябре 1961 г. фирма анонсировала создание серии ИС типа SN -51, а с 1962 г. начала их серийное производство и поставки в интересах Минобороны США и НАСА.

ИС Роберта Нойса. Серия ИС “ Micrologic

В 1957 г. по ряду причин от У. Шокли, изобретателя плоскостного транзистора, ушла группа в восемь молодых инженеров, которые хотели попробовать реализовать собственные идеи. “Восьмерка предателей”, как их называл Шокли, лидерами которых были Р. Нойс и Г. Мур, основала фирму Fairchild Semiconductor (“прекрасное дитя”) . Возглавил фирму Роберт Нойс, было ему тогда 23 года.

В конце 1958 года физик Д. Хорни, работавший в компании Fairchild Semiconductor, разработал планарную технологию изготовления транзисторов. А физик чешского происхождения Курт Леховек, работавший в Sprague Electric, разработал технику использования обратно включенного n - p перехода для электрической изоляции компонентов. В 1959 году Роберт Нойс, прослышав про макет ИС Килби, решил попробовать создать интегральную схему, комбинируя процессы, предложенные Хорни и Леховеком. А вместо “волосатой технологии” межсоединений Нойс предложил избирательное напыление тонкого слоя металла поверх изолированных двуокисью кремния полупроводниковых структур с подключением к контактам элементов через отверстия, оставленные в изолирующем слое. Это позволило “погрузить” активные элементы в тело полупроводника, изолировав их окислом кремния, а затем соединить эти элементы напылёнными дорожками алюминия или золота, которые создаются при помощи процессов фотолитографии, металлизации и травления на последней стадии изготовления изделия. Таким образом, был получен действительно “монолитный” вариант объединения компонентов в единую схему, а новая технология получила название “планарной”. Но сначала нужно было идею проверить.

Рис. 4. Экспериментальный триггер Р. Нойса. Фото с сайта http://www.computerhistory.org/semiconductor/timeline/1960-FirstIC.html

Рис. 5. Фотография ИС Micrologic в журнале Life. Фото с сайта http://www.computerhistory.org/semiconductor/timeline/1960-FirstIC.html

В августе 1959 г. Р. Нойс поручил Джою Ласту проработать вариант ИС на планарной технологии. Сначала, как и Килби, изготовили макет триггера на нескольких кристаллах кремния, на которых было сделано 4 транзистора и 5 резисторов. Затем 26 мая 1960 г. изготовили первый однокристальный триггер. Для изоляции элементов в нём с обратной стороны кремниевой пластины протравливали глубокие канавки, заполняемые эпоксидной смолой. 27 сентября 1960 г. изготовили третий вариант триггера (рис. 4), в котором элементы изолировались обратно включенным p - n переходом.

Фирма Fairchild Semiconductor до этого времени занималась только транзисторами, схемотехников для создания полупроводниковых ИС у неё не было. Поэтому в качестве разработчика схем был приглашен Роберт Норман из фирмы Sperry Gyroscope . Норман был знаком с резисторно-транзисторной логикой, которую фирма с его подачи и выбрала в качестве основы своей будущей серии ИС “Micrologic”, нашедшей своё первое применение в аппаратуре ракеты “Минитмен”. В марте 1961 г. Fairchild анонсировала первую опытную ИС этой серии (F -триггер, содержащий шесть элементов: четыре биполярных транзистора и два резистора, размещённых на пластине диаметром 1 см.) с опубликованием её фотографии (рис. 5) в журнале Life (от 10 марта 1961 г.). Ещё 5 ИС были анонсированы в октябре. А с начала 1962 г. Fairchild развернула серийное производство ИС и поставки их также в интересах Минобороны США и НАСА.

Килби и Нойсу пришлось выслуш ать немало критических замечаний по поводу своих новаций. Считалось, что практический выход годных интегральных схем будет очень низким. Понятно, что он должен быть ниже, чем у транзисторов (поскольку содержит несколько транзисторов), у которых он тогда был не выше 15%. Во-вторых, многие полагали, что в интегральных схемах используются неподходящие материалы, поскольку резисторы и конденсаторы делались тогда отнюдь не из полупроводников. В третьих, многие не могли воспринять мысль неремонтопригодности ИС. Им казалось кощунственным выбрасывать изделие, в котором вышел из строя только один из многих элементов. Все сомнения постепенно были отброшены, когда интегральные схемы были успешно использованы в военных и космических программах США.

Один из основателей фирмы Fairchild Semiconductor Г. Мур сформулировал основной закон развития кремниевой микроэлектроники, согласно которому число транзисторов в кристалле интегральной схемы удваивалось каждый год. Этот закон, названный “закон Мура”, довольно чётко действовал в течение первых 15 лет (начиная с 1959 г.), а затем такое удвоение происходило приблизительно за полтора года.

Далее индустрия ИС в США начала развиваться стремительными темпами. В США начался лавинообразный процесс возникновения предприятий, ориентированных исключительно “под планар”, иногда доходило до того, что регистрировались по десятку фирм в неделю. Стремясь к ветеранам (фирмам У. Шокли и Р. Нойса), а также благодаря налоговым льготам и сервису, представляемому Стенфордским университетом, “новички” кучковались главным образом в долине Санта-Клара (Калифорния). Поэтому неудивительно, что в 1971 г. в обиход с легкой руки журналиста-популяризатора технических новинок Дона Хофлера в обращение вошел романтически-техногенный образ “Кремниевой долины” (Silicon Valley), навсегда ставший синонимом Мекки полупроводниковой технологической революции. Кстати, в той местности действительно имеется славившаяся ранее многочисленными абрикосовыми, вишневыми и сливовыми садами долина, имевшая до появления в ней фирмы Шокли другое, более приятное название – Долина сердечного удовольствия (the Valley of Heart"s Delight), ныне, к сожалению, почти забытое.

В 1962 год в США началось серийное производство интегральных схем, хотя их объём поставок заказчикам и составил всего лишь несколько тысяч. Сильнейшим стимулом для развития приборостроительной и электронной промышленности на новой основе явилась ракетно-космическая техника. США не имели тогда таких же мощных межконтинентальных баллистических ракет, как советские, и для увеличения заряда были вынуждены пойти на максимальное сокращение массы носителя, в том числе систем управления, за счёт внедрения последних достижений электронной технологии. Фирмы Texas Instrument и Fairchild Semiconductor заключили крупные контракты на разработку и изготовление интегральных схем с министерством обороны США и с НАСА.

Первые полупроводниковые ИС в СССР

К концу 1950-х годов советская промышленность нуждалась в полупроводниковых диодах и транзисторах настолько, что потребовались радикальные меры. В 1959 году были основаны заводы полупроводниковых приборов в Александрове, Брянске, Воронеже, Риге и др. В январе 1961 года ЦК КПСС и СМ СССР приняли очередное Постановление “О развитии полупроводниковой промышленности”, в котором предусматривалось строительство заводов и НИИ в Киеве, Минске, Ереване, Нальчике и других городах.

Нас будет интересовать один их новых заводов – выше упомянутый Рижский завод полупроводниковых приборов (РЗПП, он несколько раз менял свои названия, для простоты мы используем наиболее известное, действующее и ныне). В качестве стартовой площадки новому заводу выделили строящееся здание кооперативного техникума площадью 5300 м 2 , одновременно началось строительство специального здания. К февралю 1960 года на заводе было уже создано 32 службы, 11 лабораторий и опытное производство, приступившее в апреле к подготовке производства первых приборов. На заводе уже работало 350 человек, 260 из которых в течение года направлялись на учёбу в московский НИИ-35 (позже НИИ “Пульсар”) и на ленинградский завод “Светлана”. А к концу 1960 года численность работающих достигла 1900 человек. Первоначально технологические линии размещались в перестроенном спортивном зале корпуса кооперативного техникума, а лаборатории ОКБ – в бывших учебных аудиториях. Первые приборы (сплавно-диффузионные и конверсионные германиевые транзисторы П-401, П-403, П-601 и П-602 разработки НИИ-35) завод выпустил через 9 месяцев после подписания приказа о его создания, в марте 1960 года. А к концу июля изготовил первую тысячу транзисторов П-401. Затем освоил в производстве многие другие транзисторы и диоды. В июне 1961 года завершилось строительство специального корпуса, в котором началось массовое производство полупроводниковых приборов.

С 1961 года завод приступил к самостоятельным технологическим и опытно-конструкторским работам, в том числе – по механизации и автоматизации производства транзисторов на основе фотолитографии. Для этого был разработан первый отечественный фотоповторитель (фотоштамп) – установка совмещения и контактной фотопечати (разработчик А.С. Готман). Большую помощь в финансировании и изготовлении уникального оборудования оказывали предприятия Минрадиопрома, в том числе КБ-1 (позже НПО “Алмаз”, Москва) и НИИРЭ. Тогда наиболее активные разработчики малогабаритной радиоаппаратуры, не имея своей технологической полупроводниковой базы, искали пути творческого взаимодействия с недавно созданными полупроводниковыми заводами.

На РЗПП проводились активные работы по автоматизации производства германиевых транзисторов типа П401 и П403 на основе создаваемой заводом технологической линии “Аусма”. Её главный конструктор (ГК) А.С. Готман предложил делать на поверхности германия токоведущие дорожки от электродов транзистора к периферии кристалла, чтобы проще разваривать выводы транзистора в корпусе. Но главное, эти дорожки можно было использовать в качестве внешних выводов транзистора при бескорпусной их сборке на платы (содержащие соединительные и пассивные элементы), припаивая их непосредственно к соответствующим контактным площадкам (фактически предлагалась технология создания гибридных ИС). Предлагаемый метод, при котором токоведущие дорожки кристалла как бы целуются с контактными площадками платы, получил оригинальное название – “поцелуйная технология”. Но из-за ряда оказавшихся тогда неразрешимыми технологических проблем, в основном связанных с проблемами точности получения контактов на печатной плате, практически реализовать “поцелуйную технологию” не удалось. Через несколько лет подобная идея была реализована в США и СССР и нашла широкое применение в так называемых “шариковых выводах” и в технологии “чип-на-плату”.

Тем не менее, аппаратурные предприятия, сотрудничающие с РЗПП, в том числе НИИРЭ, надеялись на “поцелуйную технологию” и планировали её применение. Весной 1962 года, когда стало понятно, что её реализация откладывается на неопределённый срок, главный инженер НИИРЭ В.И. Смирнов попросил директора РЗПП С.А. Бергмана найти другой путь реализации многоэлементной схемы типа 2НЕ-ИЛИ, универсальной для построения цифровых устройств.

Рис. 7. Эквивалентная схема ИС Р12-2 (1ЛБ021) . Рисунок из проспекта ИС от 1965 г.

Первая ИС и ГИС Юрия Осокина. Твердая схема Р12-2 (ИС серий 102 и 116 )

Директор РЗПП поручил эту задачу молодому инженеру Юрию Валентиновичу Осокину . Организовали отдел в составе технологической лаборатории, лаборатории разработки и изготовления фотошаблонов, измерительной лаборатории и опытно-производственной линейки. В то время в РЗПП была поставлена технология изготовления германиевых диодов и транзисторов, ее и взяли за основу новой разработки. И уже осенью 1962 года были получены первые опытные образцы германиевой твёрдой схемы 2НЕ-ИЛИ (поскольку термина ИС тогда не существовало, из уважения к делам тех дней сохраним название “твёрдая схема” – ТС), получившей заводское обозначение “Р12- 2” . Сохранился рекламный буклет 1965 г. на Р12-2 (рис. 6), информацией и иллюстрациями из которого мы воспользуемся. ТС Р12-2 содержала два германиевых p - n - p -транзистора (модифицированные транзисторы типа П401 и П403) с общей нагрузкой в виде распределённого германиевого резистора р-типа (рис.7).

Рис. 8. Структура ИС Р12-2. Рисунок из проспекта ИС от 1965 г.

Рис. 9. Габаритный чертеж ТС Р12-2. Рисунок из проспекта ИС от 1965 г.

Внешние выводы формируются термокомпрессионной сваркой между германиевыми областями ТС структуры и золотом выводных проводников. Это обеспечивает устойчивую работу схем при внешних воздействиях в условиях тропиков и морского тумана, что особенно важно для работы в военно-морских квазиэлектронных АТС, выпускаемых рижским заводом ВЭФ, так же заинтересовавшимся этой разработкой.

Конструктивно ТС Р12-2 (и последующая за ней Р12-5) были выполнены в виде “таблетки” (рис.9) из круглой металлической чашечки диаметром 3 мм и высотой 0,8 мм. В неё размещался кристалл ТС и заливался полимерным компаундом, из которого выходили короткие внешние концы выводов из мягкой золотой проволоки диаметром 50 мкм, приваренные к кристаллу. Масса Р12-2 не превышала 25 мг. В таком исполнении ТС были устойчивы к воздействию относительной влажности 80% при температуре окружающей среды 40 ° С и к циклическим изменениям температуры от -60 ° до 60 ° С.

К концу 1962 года опытное производство РЗПП выпустило около 5 тыс. ТС Р12-2, а в 1963 году их было сделано несколько десятков тысяч. Таким образом, 1962 год стал годом рождения микроэлектронной промышленности в США и СССР.

Рис. 10. Группы ТС Р12-2


Рис. 11. Основные электрические характеристики Р12-2

Полупроводниковая технология тогда находилась на стадии становления и ещё не гарантировала строгой повторяемости параметров. Поэтому работоспособные приборы рассортировывали по группам параметров (это часто делают и в наше время). Так же поступили и рижане, установив 8 типономиналов ТС Р12-2 (рис. 10). Все другие электрические и иные характеристики у всех типономиналов одинаковы (рис. 11).

Выпуск ТС Р12-2 начался одновременно с проведением ОКР “Твердость”, завершившимся в 1964 году (ГК Ю.В. Осокин). В рамках этой работы была разработана усовершенствованная групповая технология серийного производства германиевых ТС на основе фотолитографии и гальванического осаждения сплавов через фотомаску. Её основные технические решения зарегистрированы как изобретение Осокина Ю.В. и Михаловича Д.Л. (А.С. №36845). В издававшемся с грифом “секретно” журнале “Спецрадиоэлектроника” вышло несколько статей Ю.В. Осокина в соавторстве со специалистами КБ-1 И.В. Ничего, Г.Г. Смолко и Ю.Е. Наумовым с описанием конструкции и характеристик ТС Р12-2 (и последовавшей за ней ТС Р12-5).

Конструкция Р12-2 была всем хороша, кроме одного – потребители не умели применять такие маленькие изделия с тончайшими выводами. Ни технологии, ни оборудования для этого у аппаратурных фирм, как правило, не было. За всё время выпуска Р12-2 и Р12-5 их применение освоили НИИРЭ, Жигулевский радиозавод Минрадиопрома, ВЭФ, НИИП (с 1978 года НПО “Радиоприбор”) и немногие другие предприятия. Понимая проблему, разработчики ТС совместно с НИИРЭ сразу же продумали второй уровень конструкции, который одновременно увеличил плотность компоновки аппаратуры.

Рис. 12. Модуль из 4 ТС Р12-2

В1963 г. в НИИРЭ в рамках ОКР “Квант” (ГК А.Н. Пелипенко, при участии Е.М. Ляховича) была разработана конструкция модуля, в котором объединялось четыре ТС Р12-2 (рис.12). На микроплату из тонкого стеклотекстолита размещали от двух до четырёх ТС Р12-2 (в корпусе), реализующих в совокупности определённый функциональный узел. На плату впрессовывали до 17 выводов (число менялось для конкретного модуля) длиной 4 мм. Микроплату помещали в металлическую штампованную чашечку размером 21,6 ? 6,6 мм и глубиной 3,1 мм и заливали полимерным компаундом. В результате получилась гибридная интегральная схема (ГИС) с двойной герметизацией элементов. И, как мы уже говорили, это была первая в мире ГИС с двухуровневой интеграцией, а, возможно, вообще первая ГИС. Было разработано восемь типов модулей с общим названием “Квант”, выполнявших различные логические функции. В составе таких модулей ТС Р12-2 сохраняли работоспособность при воздействии постоянных ускорений до 150 g и вибрационных нагрузок в диапазоне частот 5–2000 Гц с ускорением до 15 g .

Модули “Квант” сначала выпускало опытное производство НИИРЭ, а затем их передали на Жигулевский радиозавод Минрадиопрома СССР, поставлявший их различным потребителям, в том числе заводу ВЭФ.

ТС Р12-2 и модули “Квант” на их основе хорошо зарекомендовали себя и широко применялись. В 1968 году вышел стандарт, устанавливающий единую в стране систему обозначений интегральных схем, а в 1969 году – Общие технические условия на полупроводниковые (НП0.073.004ТУ) и гибридные (НП0.073.003ТУ) ИС с единой системой требований. В соответствии с этими требованиями в Центральном бюро по применению интегральных схем (ЦБПИМС, позже ЦКБ “Дейтон”, Зеленоград) 6 февраля 1969 года на ТС были утверждены новые технические условия ЩТ3.369.001-1ТУ. При этом в обозначении изделия впервые появился термин “интегральная схема” серии 102. ТС Р12-2 стали называться ИС: 1ЛБ021В, 1ЛБ021Г, 1ЛБ021Ж, 1ЛБ021И. Фактически это была одна ИС, рассортированная на четыре группы по выходному напряжению и нагрузочной способности.

Рис. 13. ИС серии 116 и 117

А 19 сентября 1970 года в ЦБПИМС были утверждены технические условия АВ0.308.014ТУ на модули “Квант”, получившие обозначение ИС серии 116 (рис.13). В состав серии входило девять ИС: 1ХЛ161, 1ХЛ162 и 1ХЛ163 – многофункциональные цифровые схемы; 1ЛЕ161 и 1ЛЕ162 – два и четыре логических элемента 2НЕ-ИЛИ; 1ТР161 и 1ТР1162 – один и два триггера; 1УП161 – усилитель мощности, а также 1ЛП161 – логический элемент "запрет" на 4 входа и 4 выхода. Каждая их этих ИС имела от четырёх до семи вариантов исполнения, отличающихся напряжением выходных сигналов и нагрузочной способностью, всего было 58 типономиналов ИС. Исполнения маркировались буквой после цифровой части обозначения ИС, например, 1ХЛ161Ж. В дальнейшем номенклатура модулей расширялась. ИС серии 116 фактически были гибридными, но по просьбе РЗПП были маркированы как полупроводниковые (первая цифра в обозначении – “ 1” , у гибридных должно быть “ 2”).

В 1972 году совместным решением Минэлектронпрома и Минрадиопрома производство модулей было передано из Жигулевского радиозавода на РЗПП. Это исключило транспортировку ИС серии 102 на дальние расстояния, поэтому отказались от герметизации кристалла каждой ИС. В результате упростилась конструкция ИС и 102-й, и 116-й серий: отпала необходимость корпусировать ИС серии 102 в металлическую чашечку с заливкой компаундом. Бескорпусные ИС серии 102 в технологической таре поступали в соседний цех на сборку ИС серии 116, монтировались непосредственно на их микроплату и герметизировались в корпусе модуля.

В середине 1970-х годов вышел новый стандарт на систему обозначений ИС. После этого, например, ИС 1ЛБ021В получила обозначение 102ЛБ1В.

Вторая ИС и ГИС Юрия Осокина. Твердая схема Р12-5 (ИС серий 103 и 117 )

К началу 1963 года в результате серьёзных работ по разработке высокочастотных n - p - n транзисторов коллектив Ю.В. Осокина накопил большой опыт работы с p -слоями на исходной n -германиевой пластине. Это и наличие всех необходимых технологических компонентов позволило Осокину в 1963 году приступить к разработке новой технологии и конструкции более быстродействующего варианта ТС. В 1964 году по заказу НИИРЭ была завершена разработка ТС Р12-5 и модулей на её основе. По её результатам в 1965 году была открыта ОКР “Паланга” (ГК Ю.В. Осокин, его заместитель – Д.Л. Михалович, завершена в 1966 году). Разрабатывались модули на основе Р12-5 в рамках той же ОКР “Квант”, что и модули на Р12-2. Одновременно с техническими условиями на серии 102 и 116 были утверждены технические условия ЩТ3.369.002-2ТУ на ИС серии 103 (Р12-5) и АВ0.308.016ТУ на ИС серии 117 (модули на основе ИС серии 103). Номенклатура типов и типономиналов ТС Р12-2, модулей на них и серий ИС 102 и 116 была идентична номенклатуре ТС Р12-5 и ИС серий 103 и 117, соответственно. Отличались они только быстродействием и технологией изготовления кристалла ИС. Типовое время задержки распространения сигнала серии 117 составило 55 нс против 200 нс в серии 116.

Конструктивно ТС Р12-5 представляла собой четырёхслойную полупроводниковую структуру (рис.14), где подложка n -типа и эммитеры p + -типа подсоединялись к общей шине “земли”. Основные технические решения построения ТС Р12-5 зарегистрированы как изобретение Осокина Ю.В., Михаловича Д.Л. Кайдалова Ж.А и Акменса Я.П. (А.С. №248847). При изготовлении четырехслойной структуры ТС Р12-5 важным ноу-хау было формирование в исходной германиевой пластине n -типа p -слоя. Это достигалось диффузией цинка в кварцевой отпаянной ампуле, где пластины располагаются при температуре около 900 ° С, а цинк – в другом конце ампулы при температуре около 500 ° С. Дальнейшее формирование структуры ТС в созданном p -слое аналогично ТС Р12-2. Новая технология позволила уйти от сложной формы кристалла ТС. Пластины с Р12-5 также шлифовались с тыльной стороны до толщины около 150 мкм с сохранением части исходной пластины, далее они скрайбировались на отдельные прямоугольные кристаллы ИС.

Рис. 14. Структура кристалла ТС Р12-5 из АС №248847. 1 и 2 – земля, 3 и 4 – входы, 5 – выход, 6 - питание

После первых положительных результатов изготовления опытных ТС Р12-5, по заказу КБ-1 была открыта НИР “Мезон- 2” , направленная на создание ТС с четырьмя Р12-5. В 1965 году получены действующие образцы в плоском металлокерамическом корпусе. Но Р12-5 оказалась сложной в производстве, главным образом – из-за сложности формирования легированного цинком p -слоя на исходной n - Ge пластине. Кристалл оказался трудоёмким в изготовлении, процент выхода годных низкий, стоимость ТС высокая. По этим же причинам ТС Р12-5 выпускалась в небольших объёмах и вытеснить более медленную, но технологичную Р12-2 она не смогла. А НИР “Мезон- 2” вообще не получил продолжения, в том числе – из-за проблем межсоединений.

К этому времени в НИИ “Пульсар” и в НИИМЭ уже широким фронтом велись работы по развитию планарной кремниевой технологии, обладающей рядом преимуществ перед германиевой, главные из которых – более высокий диапазон рабочих температур (+150°С у кремния и +70°С у германия) и наличии у кремния естественной защитной пленки SiO 2 . А специализация РЗПП была переориентирована на создание аналоговых ИС. Поэтому специалисты РЗПП посчитали развитие германиевой технологии для производства ИС нецелесообразным. Однако при производстве транзисторов и диодов германий ещё какое-то время не сдавал своих позиций. В отделе Ю.В. Осокина уже после 1966 года были разработаны и производились РЗПП германиевые планарные малошумящие СВЧ транзисторы ГТ329, ГТ341, ГТ 383 и др. Их создание было отмечено Государственной премией Латвийской СССР.

Применение

Рис. 15. Арифметическое устройство на твердосхемных модулях. Фото из буклета ТС от 1965 г.

Рис. 16. Сравнительные габариты устройства управления АТС, выполненного на реле и ТС. Фото из буклета ТС от 1965 г.

Заказчиками и первыми потребителями ТС Р12-2 и модулей были создатели конкретных систем: ЭВМ “Гном” (рис. 15) для бортовой самолетной системы “Купол” (НИИРЭ, ГК Ляхович Е.М.) и военно-морских и гражданских АТС (завод ВЭФ, ГК Мисуловин Л.Я.). Активно участвовало на всех стадиях создания ТС Р12-2, Р12-5 и модулей на их и КБ-1, главным куратором этого сотрудничества от КБ-1 был Н.А. Барканов. Помогали финансированием, изготовлением оборудования, исследованиями ТС и модулей в различных режимах и условиях эксплуатации.

ТС Р12-2 и модули “Квант” на её основе были первыми микросхемами в стране. Да и в мире они были среди первых – только в США начинали выпускать свои первые полупроводниковые ИС фирмы Texas Instruments и Fairchild Semiconductor , а в 1964 г. корпорация IBM начала выпуск толстопленочных гибридных ИС для своих ЭВМ. В других странах об ИС ещё и не задумывались. Поэтому интегральные схемы для общественности были диковинкой, эффективность их применения производила поразительное впечатление и обыгрывалась в рекламе. В сохранившемся буклете на ТС Р12-2 от 1965 года (на основе уже реальных применений) сказано: “ Применение твёрдых схем Р12-2 в бортовых вычислительных устройствах позволяет в 10–20 раз сократить вес и габариты этих устройств, уменьшить потребляемую мощность и увеличить надёжность работы. … Применение твёрдых схем Р12-2 в системах управления и коммутации трактов передачи информации АТС позволяет сократить объём управляющих устройств примерно в 300 раз, а также значительно снизить потребление электроэнергии (в 30--50 раз )” . Эти утверждения иллюстрировались фотографиями арифметического устройства ЭВМ “Гном” (рис. 15) и сравнением выпускаемой тогда заводом ВЭФ стойки АТС на основе реле с маленьким блочком на ладони девушки (рис.16). Были и другие многочисленные применения первых рижских ИС.

Производство

Сейчас трудно восстановить полную картину объёмов производства ИС серий 102 и 103 по годам (сегодня РЗПП из крупного завода превратился в небольшое производство и многие архивы утеряны). Но по воспоминаниям Ю.В. Осокина, во второй половине 1960-х годов производство исчислялось многими сотнями тысяч в год, в 1970-х годах – миллионами. По сохранившимся его личным записям в 1985 году было выпущено ИС серии 102 – 4 100 000 шт., модулей серии 116 – 1 025 000 шт., ИС серии 103 – 700 000 шт., модулей серии 117 – 175 000 шт.

В конце 1989 года Ю.В. Осокин, тогда генеральный директор ПО “Альфа”, обратился к руководству Военно-промышленной комиссии при СМ СССР (ВПК) с просьбой о снятии серий 102, 103, 116 и 117 с производства ввиду их морального старения и высокой трудоёмкости (за 25 лет микроэлектроника далеко ушла вперед), но получил категорический отказ. Заместитель председателя ВПК В.Л. Коблов сказал ему, что самолеты летают надёжно, замена исключается. После распада СССР ИС серий 102, 103, 116 и 117 выпускались ещё до середины 1990-х годов, т. е. более 30 лет. ЭВМ “Гном” до сих пор стоят в штурманской кабине “Ил- 76” и некоторых других самолетов. “Это суперкомпьютер”, – не теряются наши лётчики, когда зарубежные коллеги удивленно интересуются невиданным ныне агрегатом.

О приоритетах

Несмотря на то, что у Дж. Килби и Р. Нойса были предшественники, именно они признаны мировой общественностью в качестве изобретателей интегральной схемы.

Р. Килби и Дж. Нойс через свои фирмы подали заявки на выдачу патента на изобретение интегральной схемы. Texas Instruments подала заявку на патент раньше, в феврале 1959 г., а Fairchild сделала это только в июле того же года. Но патент под номером 2981877 выдали в апреле 1961 г. Р. Нойсу. Дж. Килби подал в суд и только в июне 1964 г. получил свой патент под номером 3138743. Потом была десятилетняя война о приоритетах, в результате которой (редкий случай) “победила дружба”. В конечном счёте, Апелляционный Суд подтвердил претензии Р. Нойса на первенство в технологии, но постановил считать Дж. Килби создателем первой работающей микросхемы. А Texas Instruments и Fairchild Semiconductor подписали договор о кросс-лицензировании технологий.

В СССР патентование изобретений авторам ничего, кроме хлопот, ничтожной разовой выплаты и морального удовлетворения не давало, поэтому многие изобретения вообще не оформлялись. И Осокин тоже не спешил. Но для предприятий количество изобретений было одним из показателей, так что их всё же приходилось оформлять. Поэтому Авторское свидетельство СССР за №36845 на изобретение ТС Р12-2 Ю. Осокина и Д. Михалович получили только 28 июня 1966 года.

А Дж. Килби в 2000 г. за изобретение ИС стал одним из лауреатов Нобелевской премии. Р. Нойс не дождался мирового признания, он скончался в 1990 г., а п о положению Нобелевская премия не присваивается посмертно. Что, в данном случае, не совсем справедливо, поскольку вся микроэлектроника пошла по пути, начатом Р. Нойсом. Авторитет Нойса среди специалистов был настолько высок, что он даже получил прозвище “мэр Кремниевой долины”, поскольку был тогда самым популярным из ученых, работавших в той части Калифорнии, которая получила неофициальное название Silicon Valley (В. Шокли называли “Моисеем Кремниевой долины”). А путь Дж. Килби (“волосатый” германий) оказался тупиковым, и не был реализован даже в его фирме. Но жизнь не всегда справедлива.

Нобелевская премия была присвоена троим ученым. Половину её получил 77-летний Джек Килби, а вторую половину разделили между академиком Российской академии наук Жоресом Алферовым и профессором Калифорнийского университета в Санта-Барбаре, американцем немецкого происхождения Гербертом Кремером, за “развитие полупроводниковых гетероструктур, используемых в высокоскоростной оптоэлектронике”.

Оценивая эти работы, эксперты отметили, что “интегральные схемы есть, безусловно, открытие века, оказавшее сильнейшее влияние на общество и мировую экономику”. Для всеми забытого Дж. Килби присуждение Нобелевской премии оказалось сюрпризом. В интервью журналу Europhysics News он признался: “ В то время я лишь думал о том, что было бы важным для развития электроники с точки зрения экономики. Но я не понимал тогда, что снижение стоимости электронных изделий вызовет лавинный рост электронных технологий” .

А работы Ю. Осокина не оценены не только Нобелевским комитетом. Забыты они и в нашей стране, приоритет страны в создании микроэлектроники не защищен. А он бесспорно был.

В 1950-е годы была создана материальная основа для формирования в одном монолитном кристалле или на одной керамической подложке многоэлементных изделий – интегральных схем. Поэтому не удивительно, что почти одновременно идея ИС независимо возникла в головах многих специалистов. А оперативность внедрения новой идеи зависела от технологических возможностей автора и заинтересованности изготовителя, т. е. от наличия первого потребителя. В этом отношении Ю. Осокин оказался в лучшем положении, чем его американские коллеги. Килби был новичком в TI , ему даже пришлось доказывать руководству фирмы принципиальную возможность реализации монолитной схемы изготовлением её макета. Собственно роль Дж. Килби в создании ИС сводится к перевоспитанию руководства TI и в провокации своим макетом Р. Нойса к активным действиям. В серийное производство изобретение Килби не пошло. Р. Нойс в своей молодой и ещё не окрепшей компании пошёл на создание новой планарной технологии, которая действительно стала основой последующей микроэлектроники, но поддалась автору не сразу. В связи с вышесказанным им обоим и их фирмам пришлось потратить немало сил и времени для практической реализации своих идей по построению серийноспособных ИС. Их первые образцы остались экспериментальными, а в серийное производство пошли уже другие микросхемы, даже не ими разработанные. В отличие от Килби и Нойса, которые были далеки от производства, заводчанин Ю. Осокин опирался на промышленно освоенные полупроводниковые технологии РЗПП, и у него были гарантированные потребители первых ТС в виде инициатора разработки НИИРЭ и рядом расположенного завода ВЭФ, помогавших в данной работе. По этим причинам уже первый вариант его ТС сразу пошел в опытное, плавно перешедшее в серийное производство, которое непрерывно продолжалось более 30 лет. Таким образом, начав разработку ТС позже Килби и Нойса, Ю. Осокин (не зная об этом соревновании) быстро догнал их. Причём работы Ю. Осокина никак не связаны с работами американцев, свидетельство тому абсолютная непохожесть его ТС и реализованных в ней решений на микросхемы Килби и Нойса. Производство своих ИС Texas Instruments (не изобретение Килби), Fairchild и РЗПП начали почти одновременно, в 1962 году. Это дает полное право рассматривать Ю. Осокина одним из изобретателей интегральной схемы наравне с Р. Нойсом и более, чем Дж. Килби, а часть нобелевской премии Дж. Килби было бы справедливо поделить с Ю. Осокиным. Что же касается изобретения первой ГИС с двухуровневой интеграцией (а возможно и ГИС вообще) то здесь приоритет А. Пелипенко из НИИРЭ абсолютно бесспорен.

К сожалению, не удалось найти образцов ТС и приборов на их основе, необходимых для музеев. Автор будет весьма признателен за такие образцы или их фотографии.

Классификация интегральных схем

По конструктивно-технологическому исполнению различают полу-проводниковые, пленочные и гибридные ИС.

К полупроводниковым относят ПМС (полупроводниковые интег-ральные микросхемы), все элементы и межэлементные,соединения которой выполнены в объеме или на поверхности полупроводника. В зависимости от способов изоляции отдельных элементов различают ПМС с изоляцией p-n-переходами и микросхемы с диэлектрической (оксидной) изоляцией. ПМС можно изготовить и на подложке из ди-электрического материала на основе как биполярных, так и поле-вых транзисторов. Обычно в этих схемах транзисторы выполнены в виде трехслойных структур с двумя р-n-переходами (n-p-n-типа), а диоды — в виде двухслойных структур с одним р-л-переходом. Иног-да вместо диодов используют транзисторы в диодном включении. Резисторы ПМС, представленные участками легированного полу-проводника с двумя выводами, имеют сопротивление несколько ки-лоомов. В качестве высокоомных резисторов иногда используют об-ратное сопротивление р-n-перехода или входные сопротивления эмнт-терных повторителей. Роль конденсаторов в ПМС выполняют обратно смещенные p-rt-переходы. Емкость таких конденсаторов составляет 50 — 200 пФ. Дроссели в ПМС создавать трудно, поэтому большинство устройств проектируют без индуктивных элементов. Все элементы ПМС полу-чают в едином технологическом цикле в кристалле полупроводника. Соединения элементов таких схем осуществляются с помощью алю-миниевых или золотых пленок, получаемых методом вакуумного на-пыления. Соединение схемы с внешними выводами производят алю-миниевыми или золотыми проводниками диаметром около 10 мкм, которые методом термокомпрессии присоединяют к пленкам, а за-тем приваривают к внешним выводам микросхемы. Полупроводниковые микросхемы могут рассеивать мощность 50 — 100 мВт, работать на частотах до 20 — 100 МГц, обеспечивать время задержки до 5 не. Плотность монтажа электронных устройств на ПМС — до 500 элементов на 1 см3. Современный групповой технологический цикл позволяет обра-батывать одновременно десятки полупроводниковых пластин, каж-дая из которых содержит сотни ПМС с сотнями элементов в кристал-ле, связанных в заданные электронные цепи. При такой технологии обеспечивается высокая идентичность электрических характеристик микросхем.

Пленочными интегральными (или просто пленочными схемами ПС) называют ИС, все элементы и межэлементные соединения кото-рой выполнены только в виде пленок. Интегральные схемы подраз-деляют, на тонко- и толстопленочные. Эти схемы могут иметь коли-чественное и качественное различие. К тонкопленочным условно от-носят ИС с толщиной пленок до 1 мкм, а к толстопленочным — ИС с толщиной пленок выше 1 мкм. Качественное различие определяется технологией изготовления пленок. Элементы тонкопленочной ИС наносят на подложку с помощью термовакуумного осаждения и катод-ного распыления. Элементы толстопленочных ИС изготовляют преи-мущественно методом шелкографии с последующим вжиганием.

Гибридные интегральные микросхемы (ГИС) представляют со-бой сочетание навесных активных радиоэлементов (микротранзисто-ров, диодов) и пленочных пассивных элементов и их соединений. Обычно ГИС содержат: изоляционные основания из стекла или. ке-, рамики, на поверхности которых сформированы пленочные проводни-ки, резисторы, конденсаторы небольшой емкости; навесные бескор-пусные активные элементы (диоды, транзисторы); навесные пассив-ные элементы в миниатюрном исполнении (дроссели, трансформато-ры, конденсаторы большой емкости), которые не могут быть выпол-нены в виде пленок. Такую изготовленную ГИС герметизируют в пластмассовом или металлическом корпусе. Резисторы сопротивлением от тысячных долей ома до десятков килоомов в ГИС изготовляют в виде тонкой пленки нихрома или тантала. Пленки наносят на изоляционную основу (подложку) и под-вергают термическому отжигу. Для получения резисторов с сопро-тивлением в десятки мегаомов используют металлодиэлектрическив смеси (хрома, монооксида кремния и др.). Средние размеры пленоч-ных резисторов-(1 — 2)Х10~3 см2. Конденсаторы в ГИС выполняют из тонких пленок меди, сереб-ра, алюминия или золота. Напыление этих металлов производят с подслоем хрома, титана, молибдена, обеспечивая хорошую адгезию с изоляционным материалом подложки. В качестве диэлектрика в конденсаторах используют пленку из оксида кремния, бериллия, двуоксида титана и т. д. Пленочные конденсаторы изготовляют ем-костью от десятых долей пикофарады до десятков тысяч пикофарад размером от 10~3 до 1 см2. Проводники ГИС, с помощью которых осуществляют межэле-ментные соединения -и подключение к выводным зажимам, выпол-няют в виде тонкой пленки золота, меди или алюминия с подслоем никеля, хрома, титана, обеспечивающем высокую адгезию к изоля-ционному основанию. Гибридные интегральные схемы, у которых толщина пленок, образующихся при изготовлении пассивных эле-ментов, до 1 мкм с шириной 100 — 200 мкм,-относят к тонкопленоч-ным. Такие пленки получают методом термического напыления на поверхности подложек в вакууме с использованием трафаретов, ма-сок. Гибридные интегральные схемы с толщиной 1 мкм и более от-носят к толстопленочным и изготовляют путем напыления на подложки токопроводящих или диэлектрических паст через сетчатые трафареты с последующим их вжиганием в подложки при высокой температуре. Эти схемы имеют большие размеры и массу пассивных элементов. Навесные активные элементы состоят из гибких или жест-ких «шариковых» выводов, которые пайкой или сваркой присоединя-, ют к пленочной микросхеме.

Плотность пассивных и активных элементов при их многослой-ном расположении в ГИС, выполненной по тонкопленочной техноло-гии, достигает 300 — 500 элементов на 1 см3, а плотность монтажа электронных устройств на ГИС — 60 — 100 элементов на 1 см3. При такой плотности монтажа объем устройства, содержащего-107 эле-ментов, составляет 0,1 — 0,5 м3, а время безотказной работы — 103 — 104 ч. -

Основным преимуществом ГИС является возможность частичной интеграции элементов, выполненных по различной технологии (бипо-лярной, тонко- и толстопленочной и др.) с широким диапазоном электрических параметров (маломощные, мощные, активные, пассив-ные, быстродействующие и др.).

В настоящее время перспективна гибридизация различных типов интегральных схем. При малых геометрических размерах пленочных элементов и большой площади пассивных подложек на их поверхно-сти можно разместить десятки — сотни ИС и других компонентов. Та-ким путем создают многокристальные гибридные ИС с большим чис-лом (несколько тысяч) диодов, транзисторов в неделимом элементе. В комбинированных микросхемах можно разместить функциональ-ные узлы, обладающие различными электрическими характеристи-ками.

Сравнение ПМС и ГИС. Полупроводниковые микросхемы со сте-пенью интеграции до тысяч и более элементов в одном кристалле получили преимущественное. распространение. Объем производства ПМС на порядок превышает объем выпуска ГИС. В некоторых уст-ройствах целесообразно применять ГИС по ряду причин.

Технология ГИС сравнительно проста и требует меньших перво-начальных затрат на оборудование, чем полупроводниковая техно-логия, что упрощает создание нетиповых, нестандартных изделий и аппаратуры.

Пассивная часть ГИС изготовляется на отдельной подложке, что позволяет получать пассивные элементы высокого качества и создавать высокочастотные ИС.

Технология ГИС дает возможность заменять существующие ме-тоды многослойного печатного монтажа при размещении на подлож-ках бескорпусных ИС и БИС и других полупроводниковых компо-нентов. Технология ГИС предпочтительна для выполнения силовых ИС на большие мощности. Предпочтительно также гибридное испол-нение интегральных схем линейных устройств, обеспечивающих про-порциональную зависимость между входными и выходными сигна-лами. В этих устройствах сигналы изменяются в широком интерва-ле частот и мощностей, поэтому их ИС должны обладать широким диапазоном номиналов, не совместимых в едином процессе изготов-ления пассивных и активных элементов. Большие интегральные схе-мы БИС допускают объединение различных функциональных узлов, в связи с чем они получили широкое распространение в линейных устройствах.

Преимущества и недостатки интегральных схем.

  • Преимуществом ИС являются высокая надежность, малые размеры и масса. Плот-ность активных элементов в БИС достигает 103 — 104 на 1 см3. При установке микросхем в печатные платы и соединении их в блоки плотность элементов составляет 100 — 500 на 1 см3, что в 10 — 50 раз выше, чем при использовании отдельных транзисторов, диодов, ре-зисторов в микромодульных устройствах.
  • Интегральные схемы безынерционны в работе. Благодаря не-большим, размерам в микросхемах снижаются междуэлектродные емкости и индуктивности соединительных проводов, что позволяет использовать их на сверхвысоких частотах (до 3 ГГц) и в логичес-ких схемах с малым временем задержки (до 0,1 не).
  • Микросхемы экономичны (от 10 до 200 мВт) и уменьшают рас-ход электроэнергии и массу источников питания.

Основным недостатком ИС является малая выходная мощность (50 — 100 мВт).

В зависимости от функционального назначения ИС делят на две основные категории — аналоговые (или линейно-импульсные) и цифровые (или логические).

Аналоговые интегральные схемы АИС используются в радио-технических устройствах и служат для генерирования и линейного усиления сигналов, изменяющихся по закону непрерывной функции в широком диапазоне мощностей и частот. Вследствие этого анало-говые ИМС должны содержать различные по номиналам пассивные и по параметрам активные элементы, что усложняет их разработку. Гибридные микросхемы уменьшают трудности изготовления аналого-вых устройств в микроминиатюрном исполнении. Интегральные мик-росхемы становятся основной элементной базой для радиоэлектрон-ной аппаратуры.

Цифровые интегральные схемы ЦИС применяются в ЭВМ, уст-ройствах дискретной обработки информации и автоматики. С по-мощью ЦИС преобразуются и обрабатываются цифровые коды. Ва-риантом этих схем являются логические микросхемы, выполняющие операции над двоичными кодами в большинстве современных ЭВМ и цифровых устройств.

Аналоговые и цифровые ИС выпускаются сериями. В серию входят ИС, которые могут выполнять различные функции, но имеют единое конструктивно-технологическое исполнение и предназначают-ся для совместного применения. Каждая серия содержит несколько различающихся типов, которые могут делиться на типономиналы, имеющие конкретное функциональное назначение и условное обозна-чение. Совокупность типономиналов образует тип ИС.