Безопасность wi-fi. Правильная защита wi-fi. Анализ безопасности беспроводных сетей

На данный момент большинство фирм и предприятий все больше внимания уделяют использованию непосредственно Wi-Fi-сетей. Обусловлено это удобством, мобильностью и относительной дешевизной при связи отдельных офисов и возможностью их перемещения в пределах действия оборудования. В Wi-Fi-сетях применяются сложные алгоритмические математические модели аутентификации, шифрования данных, контроля целостности их передачи – что позволят быть относительно спокойным за сохранность данных при использовании данной технологии.

Анализ безопасности беспроводных сетей.

На данный момент большинство фирм и предприятий все больше внимания уделяют использованию непосредственно Wi-Fi-сетей. Обусловлено это удобством, мобильностью и относительной дешевизной при связи отдельных офисов и возможностью их перемещения в пределах действия оборудования. В Wi-Fi-сетях применяются сложные алгоритмические математические модели аутентификации, шифрования данных, контроля целостности их передачи – что позволят быть относительно спокойным за сохранность данных при использовании данной технологии.

Однако данная безопасность относительна, если не уделять должного внимания настройке беспроводной сети. К данному моменту уже существует список «стандартных» возможностей которые может получить хакер при халатности в настройке беспроводной сети:

Доступ к ресурсам локальной сети;

Прослушивание, воровство (имеется ввиду непосредственно интернет-траффик) трафика;

Искажение проходящей в сети информации;

Внедрение поддельной точки доступа;

Немного теории.

1997 год – выход в свет первого стандарта IEEE 802.11. Варианты защиты доступа к сети:

1. Использовался простой пароль SSID (Server Set ID) для доступа в локальную сеть. Данный вариант не предоставляет должного уровня защиты, особенно для нынешнего уровня технологий.

2. Использование WEP (Wired Equivalent Privacy) – то есть использование цифровых ключей шифрования потоков данных с помощью данной функции. Сами ключи это всего лишь обыкновенные пароли с длиной от 5 до 13 символов ASCII, что соответствует 40 или 104-разрядному шифрованию на статическом уровне.

2001 год - внедрение нового стандарта IEEE 802.1X. Данный стандарт использует динамические 128-разрядные ключи шифрования, то есть периодически изменяющихся во времени. Основная идея заключается в том, что пользователь сети работает сеансами, по завершении которых им присылается новый ключ - время сеанса зависит от ОС (Windows XP - по умолчанию время одного сеанса равно 30 минутам).

На данный момент существуют стандарты 802.11:

802.11 - Первоначальный базовый стандарт. Поддерживает передачу данных по радиоканалу со скоростями 1 и 2 Мбит/с.

802.11a - Высокоскоростной стандарт WLAN. Поддерживает передачу данных со скоростями до 54 Мбит/с по радиоканалу в диапазоне около 5 ГГц.

I802.11b - Наиболее распространенный стандарт. Поддерживает передачу данных со скоростями до 11 Мбит/с по радиоканалу в диапазоне около 2,4 ГГц.

802.11e - Требование качества запроса, необходимое для всех радио интерфейсов IEEE WLAN

802.11f - Стандарт, описывающий порядок связи между равнозначными точками доступа.

802.11g - Устанавливает дополнительную технику модуляции для частоты 2,4 ГГц. Предназначен, для обеспечения скоростей передачи данных до 54 Мбит/с по радиоканалу в диапазоне около 2,4 ГГц.

802.11h - Стандарт, описывающий управление спектром частоты 5 ГГц для использования в Европе и Азии.

802.11i (WPA2) - Стандарт, исправляющий существующие проблемы безопасности в областях аутентификации и протоколов шифрования. Затрагивает протоколы 802.1X, TKIP и AES.

На данный момент широко используется 4 стандарта: 802.11, 802.11a, 802.11b, 802.11g.

2003 года - был внедрён стандарт WPA (Wi-Fi Protected Access), который совмещает преимущества динамического обновления ключей IEEE 802.1X с кодированием протокола интеграции временного ключа TKIP (Temporal Key Integrity Protocol), протоколом расширенной аутентификации EAP (Extensible Authentication Protocol) и технологией проверки целостности сообщений MIC (Message Integrity Check).

Помимо этого, параллельно развивается множество самостоятельных стандартов безопасности от различных разработчиков. Ведущими являются такие гиганты как Intel и Cisco.

2004 год - появляется WPA2, или 802.11i, - максимально защищённый на данное время стандарт.

Технологии защиты Fi-Wi сетей.

WEP

Эта технология была разработана специально для шифрования потока передаваемых данных в рамках локальной сети. Данные шифруются ключом с разрядностью от 40 до 104 бит. Но это не целый ключ, а только его статическая составляющая. Для усиления защиты применяется так называемый вектор инициализации IV (Initialization Vector), который предназначен для рандомизации дополнительной части ключа, что обеспечивает различные вариации шифра для разных пакетов данных. Данный вектор является 24-битным. Таким образом, в результате мы получаем общее шифрование с разрядностью от 64 (40+24) до 128 (104+24) бит, что позволяет при шифровании оперировать и постоянными, и случайно выбранными символами. Но с другой стороны 24 бита это всего лишь ~16 миллионов комбинаций (2 24 степени) – то есть по истечению цикла генерации ключа начинается новый цикл. Взлом осуществляется достаточно элементарно:

1) Нахождение повтора (минимальное время, для ключа длинной 40 бит – от 10 минут).

2) Взлом остальной части (по сути - секунды)

3) Вы можете внедряться в чужую сеть.

При этом для взлома ключа имеются достаточно распространенные утилиты такие как WEPcrack.

802.1X

IEEE 802.1X - это основополагающий стандарт для беспроводных сетей. На данный момент он поддерживается ОС Windows XP и Windows Server 2003.

802.1X и 802.11 являются совместимыми стандартами. В 802.1X применяется тот же алгоритм, что и в WEP, а именно - RC4, но с некоторыми отличиями (большая «мобильность», т.е. имеется возможность подключения в сеть даже PDA-устройства) и исправлениями (взлом WEP и т. п.).

802.1X базируется на протоколе расширенной аутентификации EAP (Extensible Authentication Protocol), протоколе защиты транспортного уровня TLS (Transport Layer Security) и сервере доступа RADIUS (Remote Access Dial-in User Service).

После того, как пользователь прошёл этап аутентификации, ему высылается секретный ключ в зашифрованном виде на определённое незначительное время - время действующего на данный момент сеанса. По завершении этого сеанса генерируется новый ключ и опять высылается пользователю. Протокол защиты транспортного уровня TLS обеспечивает взаимную аутентификацию и целостность передачи данных. Все ключи являются 128-разрядными.

Отдельно необходимо упомянуть о безопасности RADIUS: использует в своей основе протокол UDP (а поэтому относительно быстр), процесс авторизации происходит в контексте процесса аутентификации (т.е. авторизация как таковая отсутствует), реализация RADIUS-сервера ориентирована на однопроцессное обслуживание клиентов (хотя возможно и многопроцессное - вопрос до сих пор открытый), поддерживает довольно ограниченное число типов аутентификации (сleartext и CHAP), имеет среднюю степень защищенности. В RADIUS"е шифруется только cleartext-пароли, весь остальной пакет остается "открытым" (с точки зрения безопасности даже имя пользователя является очень важным параметром). А вот CHAP – это отдельный разговор. Идея в том, что бы cleartext-пароль ни в каком виде никогда не передавался бы через сеть. А именно: при аутентификации пользователя клиент посылает пользовательской машине некий Challenge (произвольная случайная последовательность символов), пользователь вводит пароль и с этим Challengе"ем пользовательская машина производит некие шифрующий действия используя введенный пароль (как правило это обыкновенное шифрование по алгоритму MD5 (RFC-1321). Получается Response. Этот Response отправляется назад клиенту, а клиент все в совокупности (Challenge и Response) отправляет на аутентификацию 3A-серверу (Authentication, Authorization, Accounting). Тот (также имея на своей стороне пользовательский пароль) производит те же самые действия с Challeng"ем и сравнивает свой Response с полученным от клиента: сходится - пользователь аутентифицирован, нет - отказ. Таким образом, cleartext-пароль знают только сам пользователь и 3А-сервер и пароль открытым текстом не "ходит" через сеть и не может быть взломан.

WPA

WPA (Wi-Fi Protected Access) - это временный стандарт (технология защищённого доступа к беспроводным сетям), который является переходным перед IEEE 802.11i. По сути, WPA совмещает в себе:

802.1X - основополагающий стандарт для беспроводных сетей;

EAP - протокол расширенной аутентификации (Extensible Authentication Protocol);

TKIP - протокол интеграции временного ключа (Temporal Key Integrity Protocol);

MIC - технология проверки целостности сообщений (Message Integrity Check).

Основные модули - TKIP и MIC. Стандарт TKIP использует автоматически подобранные 128-битные ключи, которые создаются непредсказуемым способом и общее число вариаций которых примерно 500 миллиардов. Сложная иерархическая система алгоритма подбора ключей и динамическая их замена через каждые 10 Кбайт (10 тыс. передаваемых пакетов) делают систему максимально защищённой. От внешнего проникновения и изменения информации также обороняет технология проверки целостности сообщений (Message Integrity Check). Достаточно сложный математический алгоритм позволяет сверять отправленные в одной точке и полученные в другой данные. Если замечены изменения и результат сравнения не сходится, такие данные считаются ложными и выбрасываются.

Правда, TKIP сейчас не является лучшим в реализации шифрования, из-за новой технологии Advanced Encryption Standard (AES), используемой ранее в VPN.

VPN

Технология виртуальных частных сетей VPN (Virtual Private Network) была предложена компанией Intel для обеспечения безопасного соединения клиентских систем с серверами по общедоступным интернет-каналам. VPN наверное одна из самых надежных с точки зрения шифрования и надёжности аутентификации.

Технологий шифрования в VPN применяется несколько, наиболее популярные из них описаны протоколами PPTP, L2TP и IPSec с алгоритмами шифрования DES, Triple DES, AES и MD5. IP Security (IPSec) используется примерно в 65-70% случаев. С его помощью обеспечивается практически максимальная безопасность линии связи.

Технология VPN не была ориентированна именно для Wi-Fi - она может использоваться для любого типа сетей, но защита с её помощью беспроводных сетей наиболее правильное решение.

Для VPN выпущено уже достаточно большое количество программного (ОС Windows NT/2000/XP, Sun Solaris, Linux) и аппаратного обеспечения. Для реализации VPN-защиты в рамках сети необходимо установить специальный VPN-шлюз (программный или аппаратный), в котором создаются туннели, по одному на каждого пользователя. Например, для беспроводных сетей шлюз следует установить непосредственно перед точкой доступа. А пользователям сети необходимо установить специальные клиентские программы, которые в свою очередь также работают за рамками беспроводной сети и расшифровка выносится за её пределы. Хотя всё это достаточно громоздко, но очень надёжно. Но как и все - это имеет свои недостатки, в данном случае их два:

Необходимость в достаточно емком администрировании;

Уменьшение пропускной способности канала на 30-40%.

За исключением этого – VPN, это вполне понятный выбор. Тем более в последнее время, развитие VPN оборудования происходит как раз в направлении улучшения безопасности и мобильности. Законченное решение IPsec VPN в серии Cisco VPN 5000 служит ярким примером. Тем более что в данной линейке представлена пока только единственное сегодня решение VPN на основе клиентов, которое поддерживает Windows 95/98/NT/2000, MacOS, Linux и Solaris. Кроме этого бесплатная лицензия на использование марки и распространение программного обеспечения клиента IPsec VPN поставляется со всеми продуктами VPN 5000, что тоже не маловажно.

Основные моменты защиты Fi-Wi сетей организации.

В свете всего выше изложенного можно убедиться что имеющиеся на данный момент механизмы и технологии защиты позволяют обеспечить безопасность вашей сети, при использовании Fi-Wi. Естественно если администраторы не будут полагаться только на элементарные настройки, а озаботятся тонкой настройкой. Конечно нельзя сказать, что таким образом ваша сеть превратится в неприступный бастион, но выделив достаточно серьезные средства на оборудование, время для настройки и конечно для постоянного контроля – можно обеспечить безопасность с вероятностью примерно до 95 %.

Основные моменты при организации и настройке Wi-Fi сети которыми не стоит пренебрегать:

- Выбор и установка точки доступа:

> перед приобретением внимательно ознакомьтесь с документацией и имеющейся на данный момент информации о дырах в реализации ПО для этого класса оборудования (всем известный пример дыры в IOS маршрутизаторов Cisco, позволяющая злоумышленнику получить доступ к листу конфига). Возможно будет смысл ограничиться покупкой более дешевого варианта и обновлением ОС сетевого устройства;

> изучите поддерживаемые протоколы и технологии шифрования;

> при возможности приобретайте устройства, использующие WPA2 и 802.11i, так как они для обеспечения безопасности используют новую технологию - Advanced Encryption Standard (AES). На данный момент это могут быть двухдиапазонные точеки доступа (AP) к сетям IEEE 802.11a/b/g Cisco Aironet 1130AG и 1230AG. Данные устройства поддерживают стандарт безопасности IEEE 802.11i, технологию защиты от вторжений Wi-Fi Protected Access 2 (WPA2) с использованием Advanced Encryption Standard (AES) и гарантируют емкость, отвечающую самым высоким требованиям пользователей беспроводных локальных сетей. Новые АР используют преимущества двухдиапазонных технологий IEEE 802.11a/b/g и сохраняют полную совместимость с ранними версиями устройств, работающих на IEEE 802.11b;

> подготовьте предварительно клиентские машины для совместной работы с приобретаемым оборудованием. На данный момент некоторые технологии шифрования могут не поддерживаться ОС или драйверами. Это поможет избежать лишних затрат времени при разворачивании сети;

> не устанавливать точку доступа вне брандмауэра;

> располагайте антенны внутри стен здания, а также ограничивайте мощность радиоизлучения, чтобы снизить вероятность подключения «извне».

> используйте направленные антенны, не используйте радиоканал по умолчанию.

- Настройка точки доступа:

> если точка доступа позволяет запрещать доступ к своим настройкам с помощью беспроводного подключения, то используйте эту возможность. Изначально не давайте возможность хакеру при внедрении в вашу сеть контролировать ключевые узлы по радиоканалу. Отключите вещание по радиоканалу такие протоколы как SNMP, web-интерфейс администрирования и telnet;

> обязательно(!) используйте сложный пароль для доступа к настройкам точки доступа;

> если точка доступа позволяет управлять доступом клиентов по MAC-адресам непременно используйте это;

> если оборудование позволяет запретить трансляцию в эфир идентификатора SSID – сделайте это обязательно. Но при этом у хакера всегда есть возможность получить SSID при подключении как легитимного клиент;

> политика безопасности должна запрещать беспроводным клиентам осуществлять ad-hoc соединения (такие сети позволяют двум или более станциям подключаться непосредственно друг к другу, минуя точки доступа, маршрутизирующие их трафик). Хакеры могут использовать несколько типов атак на системы, использующие ad-hoc-соединения. Первичная проблема с ad-hoc сетями - недостаток идентификации. Эти сети могут позволить хакеру провести атаки man in the middle, отказ в обслуживании (DoS), и/или скомпрометировать системы.

- Выбор настройки в зависимости от технологии:

> если есть возможность - запретите доступ для клиентов с SSID;

> если нет другой возможности - обязательно включайте хотя бы WEP, но не ниже 128bit.

> если при установке драйверов сетевых устройств предлагается на выбор три технологиями шифрования: WEP, WEP/WPA и WPA, то выбирайте WPA;

> если в настройках устройства предлагается выбор: “Shared Key“(возможен перехват WEP-ключа, который одинаков для всех клиентов) и “Open System”(возможно внедрение в сеть, если известен SSID) - выбирайте “Shared Key”. В данном случае (если вы используете WEP-аутентификацию) – наиболее желательно включить фильтрацию по МАС-адресу;

> если ваша сеть не велика – можно выбрать Pre-Shared Key (PSK).

> если есть возможность использовать 802.1X. Но при этом при настройке RADIUS-сервера желательно выбирать тип аутентификации CHAP;

> максимальный уровень безопасности на данный момент обеспечивает применение VPN - используйте эту технологию.

- Пароли и ключи:

> при использовании SSID придерживайтесь требований аналогичных требованиям парольной защиты - SSID должен быть уникален (не забывайте, что SSID не шифруется и может быть легко перехвачен!);

> всегда используйте максимально длинные ключи. Не используйте ключи меньше 128 бит;

> не забывайте про парольную защиту – используйте генератор паролей, меняйте пароли через определенный промежуток времени, храните пароли в тайне;

> в настройках обычно имеется выбор из четырёх заранее заданных ключей - используйте их все, меняя по определенному алгоритму. По возможности ориентируйтесь не на дни недели (всегда существуют люди в любой организации, работающие по выходным – что мешает осуществить внедрение в сеть в эти дни?).

> старайтесь применять длинные динамически изменяющиеся ключи. Если вы используете статические ключи и пароли, меняйте пароли через определенный промежуток времени.

> проинструктируйте пользователей, что бы они хранили пароли и ключи в тайне. Особенно важно, если некоторые используют для входа ноутбуки которые хранят дома.

- Сетевые настройки:

> для организации разделяемых ресурсов используйте NetBEUI. Если это не противоречит концепции вашей сети - не используйте в беспроводных сетях протокол TCP/IP для организации папок и принтеров общего доступа.

> не разрешайте гостевой доступ к ресурсам общего доступа;

> старайтесь не использовать в беспроводной сети DHCP - используйте статические IP-адреса;

> ограничьте количество протоколов внутри WLAN только необходимыми.

- Общее:

> на всех клиентах беспроводной сети используйте файерволлы или при ХР хотя бы активизируйте брандмауэр;

> регулярно следите за уязвимостями, обновлениями, прошивками и драйверами ваших устройств;

> используйте периодически сканеры безопасности, для выявления скрытых проблем;

> определите инструменты для выполнения беспроводного сканирования, а также частоту выполнения этого сканирования. Беспроводное сканирование поможет определить местонахождение неправомочных точек доступа.

> если финансы вашей организации позволяют – приобретите системы обнаружения вторжения (IDS, Intrusion Detection System), такие как:

CiscoWorks Wireless LAN Solution Engine (WLSE), в которой реализовано несколько новых функций - самовосстановление, расширенное обнаружение несанкционированного доступа, автоматизированное обследование площадки развертывания, "теплое" резервирование, отслеживание клиентов с созданием отчетов в реальном времени.
CiscoWorks WLSE - централизованное решение системного уровня для управления всей беспроводной инфраструктурой на базе продуктов Cisco Aironet. Усовершенствованные функции управления радиоканалом и устройствами, поддерживаемые CiscoWorks WLSE, упрощают текущую эксплуатацию беспроводной сети, обеспечивают беспрепятственное развертывание, повышают безопасность, гарантируют максимальную степень готовности, сокращая при этом расходы на развертывание и эксплуатацию.

Система Hitachi AirLocation использует сеть стандарта IEEE802.11b и способна работать как внутри помещений, так и вне зданий. Точность определения координат объекта, по словам разработчиков, составляет 1-3 м, что несколько точнее, чем аналогичная характеристика GPS- систем. Система состоит из сервера определения координат, управляющего сервера, комплекта из нескольких базовых станций, комплекта WLAN- оборудования и специализированного ПО. Минимальная цена комплекта - около $46,3 тыс. Система определяет местонахождение необходимого устройства и расстояние между ним и каждой точкой доступа за счет вычисления времени отклика терминала на посылаемые точками, связанными в сеть с расстоянием между узлами 100-200 м, сигналы. Для достаточно точного местоположения терминала, таким образом, достаточно всего трех точек доступа.

Да цены на такое оборудование достаточно высоки, но любая серьезная компания может решить потратить данную сумму для того, что бы быть уверенной в безопасности свой беспроводной сети.

Чтобы защитить свою Wi-Fi сеть и установить пароль, необходимо обязательно выбрать тип безопасности беспроводной сети и метод шифрования. И на данном этапе у многих возникает вопрос: а какой выбрать? WEP, WPA, или WPA2? Personal или Enterprise? AES, или TKIP? Какие настройки безопасности лучше всего защитят Wi-Fi сеть? На все эти вопросы я постараюсь ответить в рамках этой статьи. Рассмотрим все возможные методы аутентификации и шифрования. Выясним, какие параметры безопасности Wi-Fi сети лучше установить в настройках маршрутизатора.

Обратите внимание, что тип безопасности, или аутентификации, сетевая аутентификация, защита, метод проверки подлинности – это все одно и то же.

Тип аутентификации и шифрование – это основные настройки защиты беспроводной Wi-Fi сети. Думаю, для начала нужно разобраться, какие они бывают, какие есть версии, их возможности и т. д. После чего уже выясним, какой тип защиты и шифрования выбрать. Покажу на примере нескольких популярных роутеров.

Я настоятельно рекомендую настраивать пароль и защищать свою беспроводную сеть. Устанавливать максимальный уровень защиты. Если вы оставите сеть открытой, без защиты, то к ней смогут подключится все кто угодно. Это в первую очередь небезопасно. А так же лишняя нагрузка на ваш маршрутизатор, падение скорости соединения и всевозможные проблемы с подключением разных устройств.

Защита Wi-Fi сети: WEP, WPA, WPA2

Есть три варианта защиты. Разумеется, не считая "Open" (Нет защиты) .

  • WEP (Wired Equivalent Privacy) – устаревший и небезопасный метод проверки подлинности. Это первый и не очень удачный метод защиты. Злоумышленники без проблем получают доступ к беспроводным сетям, которые защищены с помощью WEP. Не нужно устанавливать этот режим в настройках своего роутера, хоть он там и присутствует (не всегда) .
  • WPA (Wi-Fi Protected Access) – надежный и современный тип безопасности. Максимальная совместимость со всеми устройствами и операционными системами.
  • WPA2 – новая, доработанная и более надежная версия WPA. Есть поддержка шифрования AES CCMP. На данный момент, это лучший способ защиты Wi-Fi сети. Именно его я рекомендую использовать.

WPA/WPA2 может быть двух видов:

  • WPA/WPA2 - Personal (PSK) – это обычный способ аутентификации. Когда нужно задать только пароль (ключ) и потом использовать его для подключения к Wi-Fi сети. Используется один пароль для всех устройств. Сам пароль хранится на устройствах. Где его при необходимости можно посмотреть, или сменить. Рекомендуется использовать именно этот вариант.
  • WPA/WPA2 - Enterprise – более сложный метод, который используется в основном для защиты беспроводных сетей в офисах и разных заведениях. Позволяет обеспечить более высокий уровень защиты. Используется только в том случае, когда для авторизации устройств установлен RADIUS-сервер (который выдает пароли) .

Думаю, со способом аутентификации мы разобрались. Лучшие всего использовать WPA2 - Personal (PSK). Для лучшей совместимости, чтобы не было проблем с подключением старых устройств, можно установить смешанный режим WPA/WPA2. На многих маршрутизаторах этот способ установлен по умолчанию. Или помечен как "Рекомендуется".

Шифрование беспроводной сети

Есть два способа TKIP и AES .

Рекомендуется использовать AES. Если у вас в сети есть старые устройства, которые не поддерживают шифрование AES (а только TKIP) и будут проблемы с их подключением к беспроводной сети, то установите "Авто". Тип шифрования TKIP не поддерживается в режиме 802.11n.

В любом случае, если вы устанавливаете строго WPA2 - Personal (рекомендуется) , то будет доступно только шифрование по AES.

Какую защиту ставить на Wi-Fi роутере?

Используйте WPA2 - Personal с шифрованием AES . На сегодняшний день, это лучший и самый безопасный способ. Вот так настройки защиты беспроводной сети выглядит на маршрутизаторах ASUS:

А вот так эти настройки безопасности выглядят на роутерах от TP-Link (со старой прошивкой) .

Более подробную инструкцию для TP-Link можете посмотреть .

Инструкции для других маршрутизаторов:

Если вы не знаете где найти все эти настройки на своем маршрутизаторе, то напишите в комментариях, постараюсь подсказать. Только не забудьте указать модель.

Так как WPA2 - Personal (AES) старые устройства (Wi-Fi адаптеры, телефоны, планшеты и т. д.) могут не поддерживать, то в случае проблем с подключением устанавливайте смешанный режим (Авто).

Не редко замечаю, что после смены пароля, или других параметров защиты, устройства не хотят подключаться к сети. На компьютерах может быть ошибка "Параметры сети, сохраненные на этом компьютере, не соответствуют требованиям этой сети". Попробуйте удалить (забыть) сеть на устройстве и подключится заново. Как это сделать на Windows 7, я писал . А в Windows 10 нужно .

Пароль (ключ) WPA PSK

Какой бы тип безопасности и метод шифрования вы не выбрали, необходимо установить пароль. Он же ключ WPA, Wireless Password, ключ безопасности сети Wi-Fi и т. д.

Длина пароля от 8 до 32 символов. Можно использовать буквы латинского алфавита и цифры. Так же специальные знаки: - @ $ # ! и т. д. Без пробелов! Пароль чувствительный к регистру! Это значит, что "z" и "Z" это разные символы.

Не советую ставить простые пароли. Лучше создать надежный пароль, который точно никто не сможет подобрать, даже если хорошо постарается.

Вряд ли получится запомнить такой сложный пароль. Хорошо бы его где-то записать. Не редко пароль от Wi-Fi просто забывают. Что делать в таких ситуациях, я писал в статье: .

Если вам нужно еще больше защиты, то можно использовать привязку по MAC-адресу. Правда, не вижу в этом необходимости. WPA2 - Personal в паре с AES и сложным паролем – вполне достаточно.

А как вы защищаете свою Wi-Fi сеть? Напишите в комментариях. Ну и вопросы задавайте 🙂

Главное отличие между проводными и беспроводными сетями

связано с абсолютно неконтролируемой областью между конечными точками сети. В достаточно широком пространстве сетей беспроводная среда никак не контролируется. Современные беспроводные технологии предлагают

ограниченный набор средств управления всей областью развертывания сети. Это позволяет атакующим, находящимся в непосредственной близости от беспроводных структур, производить целый ряд нападений, которые были невозможны в проводном мире. Обсудим характерные только для беспроводного окружения угрозы безопасности, оборудование, которое используется при атаках, проблемы, возникающие при роуминге от одной точки доступа к другой укрытия для беспроводных каналов и криптографическую защиту открытых коммуникаций.

Подслушивание

Наиболее распространенная проблема в таких открытых и неуправляемых средах как беспроводные сети, - возможность анонимных атак. Анонимные вредители могут перехватывать радиосигнал и расшифровывать передаваемые данные. Оборудование, используемое для подслушивания в сети, может быть не сложнее того, которое используется для обычного доступа к этой сети. Чтобы перехватить передачу, злоумышленник должен находиться вблизи от передатчика. Перехваты такого типа практически невозможно зарегистрировать, и еще труднее им помешать. Использование антенн и усилителей дает злоумышленнику возможность находиться на значительном удалении от цели в процессе перехвата. Подслушивание ведут для сбора информации в сети, которую впоследствии предполагается атаковать. Первичная цель злоумышленника - понять, кто использует сеть, какая информация в ней доступна, каковы возможности сетевого оборудования, в какие моменты его эксплуатируют наиболее и наименее интенсивно и какова территория развертывания сети.

Все это пригодится для того, чтобы организовать атаку на сеть.

Многие общедоступные сетевые протоколы передают такую важную информацию, как имя пользователя и пароль, открытым текстом. Перехватчик может использовать добытые данные для того, чтобы получить доступ к сетевым ресурсам.

Даже если передаваемая информация зашифрована, в руках злоумышленника оказывается текст, который можно запомнить, а потом уже раскодировать. Другой способ подслушивания - подключиться к беспроводной сети. Активное подслушивание в локальной беспроводной сети обычно основано на неправильном использовании протокола Address Resolution Protocol (ARP).

Изначально эта технология была создана для «прослушивания» сети. В действительности мы имеем дело с атакой типа MITM (man in the middle, «человек посередине») на уровне связи данных. Они могут принимать различные формы и используются для разрушения конфиденциальности и целостности сеанса связи.

Атаки MITM более сложны, чем большинство других атак: для их проведения требуется подробная информация о сети. Злоумышленник обычно подменяет идентификацию одного из сетевых ресурсов.

Когда жертва атаки инициирует соединение, мошенник перехватывает его и затем завершает соединение с требуемым ресурсом, а потом пропускает все соединения с этим ресурсом через свою станцию. При этом, атакующий может посылать информацию, изменять посланную или подслушивать все переговоры и потом расшифровывать их. Атакующий посылает ARP-ответы, на которые не было запроса, к целевой станции локальной сети, которая отправляет ему весь проходящий через нее трафик. Затем злоумышленник будет отсылать пакеты указанным адресатам. Таким образом, беспроводная станция может перехватывать трафик другого беспроводного клиента (или проводного клиента в локальной сети).

Институт финансовой и экономической безопасности

РЕФЕРАТ

Безопасность беспроводных сетей

Выполнил:

Студент группы У05-201

Михайлов М.А.

Проверил:

Доцент кафедры

Бурцев В.Л.

Москва

2010

Введение

Стандарт безопасности WEP

Стандарт безопасности WPA

Стандарт безопасности WPA2

Заключение

Введение

История беспроводных технологий передачи информации началась в конце XIX века с передачей первого радиосигнала и появлением в 20-х годах ХХ века первых радиоприемников с амплитудной модуляцией. В 30-е годы появилось радио с частотной модуляцией и телевидение. В 70-е годы созданы первые беспроводные телефонные системы как естественный итог удовлетворения потребности в мобильной передаче голоса. Сначала это были аналоговые сети, а начале 80-х был разработан стандарт GSM, ознаменовавший начало перехода на цифровые стандарты, как обеспечивающие лучшее распределение спектра, лучшее качество сигнала, лучшую безопасность. С 90-x годов ХХ века происходит укрепление позиций беспроводных сетей. Беспроводные технологии прочно входят в нашу жизнь. Развиваясь с огромной скоростью, они создают новые устройства и услуги.

Обилие новых беспроводных технологий таких, как CDMA (Code Division Multiple Access, технология с кодовым разделением каналов), GSM (Global for Mobile Communications, глобальная система для мобильных коммуникаций), TDMA (Time Division Multiple Access, множественный доступ с разделением во времени), 802.11, WAP (Wireless Application Protocol, протокол беспроводных технологий), 3G (третье поколение), GPRS (General Packet Radio Service, услуга пакетной передачи данных), Bluetooth (голубой зуб, по имени Харальда Голубого Зуба – предводителя викингов, жившего в Х веке), EDGE (Enhanced Data Rates for GSM Evolution, увеличенная скорость передачи даны для GSM), i-mode и т.д. говорит о том, что начинается революция в этой области.

Весьма перспективно и развитие беспроводных локальных сетей (WLAN), Bluetooth (сети средних и коротких расстояний). Беспроводные сети развертываются в аэропортах, университетах, отелях, ресторанах, предприятиях. История разработки стандартов беспроводных сетей началась в 1990 году, когда был образован комитет 802.11 всемирной организацией IEEE (Институт инженеров по электричеству и электронике). Значительный импульс развитию беспроводных технологий дала Всемирная паутина и идея работы в Сети при помощи беспроводных устройств. В конце 90-х годов пользователям была предложена WAP-услуга, сначала не вызвавшая у населения большого интереса. Это были основные информационные услуги – новости, погода, всевозможные расписания и т.п. Также весьма низким спросом пользовались вначале и Bluetooth, и WLAN в основном из-за высокой стоимости этих средств связи. Однако по мере снижения цен рос и интерес населения. К середине первого десятилетия XXI века счет пользователей беспроводного Интернет – сервиса пошел на десятки миллионов. С появлением беспроводной Интернет - связи на первый план вышли вопросы обеспечения безопасности. Основные проблемы при использовании беспроводных сетей это перехват сообщений спецслужб, коммерческих предприятий и частных лиц, перехват номеров кредитных карточек, кража оплаченного времени соединения, вмешательство в работу коммуникационных центров.

Как и любая компьютерная сеть, Wi-Fi – является источником повышенного риска несанкционированного доступа. Кроме того, проникнуть в беспроводную сеть значительно проще, чем в обычную, - не нужно подключаться к проводам, достаточно оказаться в зоне приема сигнала.

Беспроводные сети отличаются от кабельных только на первых двух - физическом (Phy) и отчасти канальном (MAC) - уровнях семиуровневой модели взаимодействия открытых систем. Более высокие уровни реализуются как в проводных сетях, а реальная безопасность сетей обеспечивается именно на этих уровнях. Поэтому разница в безопасности тех и других сетей сводится к разнице в безопасности физического и MAC-уровней.

Хотя сегодня в защите Wi-Fi-сетей применяются сложные алгоритмические математические модели аутентификации, шифрования данных и контроля целостности их передачи, тем не менее, вероятность доступа к информации посторонних лиц является весьма существенной. И если настройке сети не уделить должного внимания злоумышленник может:

· заполучить доступ к ресурсам и дискам пользователей Wi-Fi-сети, а через неё и к ресурсам LAN;

· подслушивать трафик, извлекать из него конфиденциальную информацию;

· искажать проходящую в сети информацию;

· внедрять поддельные точки доступа;

· рассылать спам, и совершать другие противоправные действия от имени вашей сети.

Но прежде чем приступать к защите беспроводной сети, необходимо понять основные принципы ее организации. Как правило, беспроводные сети состоят из узлов доступа и клиентов с беспроводными адаптерами. Узлы доступа и беспроводные адаптеры оснащаются приемопередатчиками для обмена данными друг с другом. Каждому AP и беспроводному адаптеру назначается 48-разрядный адрес MAC, который функционально эквивалентен адресу Ethernet. Узлы доступа связывают беспроводные и проводные сети, обеспечивая беспроводным клиентам доступ к проводным сетям. Связь между беспроводными клиентами в одноранговых сетях возможна без AP, но этот метод редко применяется в учреждениях. Каждая беспроводная сеть идентифицируется назначаемым администратором идентификатором SSID (Service Set Identifier). Связь беспроводных клиентов с AP возможна, если они распознают SSID узла доступа. Если в беспроводной сети имеется несколько узлов доступа с одним SSID (и одинаковыми параметрами аутентификации и шифрования), то возможно переключение между ними мобильных беспроводных клиентов.

Наиболее распространенные беспроводные стандарты - 802.11 и его усовершенствованные варианты. В спецификации 802.11 определены характеристики сети, работающей со скоростями до 2 Мбит/с. В усовершенствованных вариантах предусмотрены более высокие скорости. Первый, 802.11b, распространен наиболее широко, но быстро замещается стандартом 802.11g. Беспроводные сети 802.11b работают в 2,4-ГГц диапазоне и обеспечивают скорость передачи данных до 11 Мбит/с. Усовершенствованный вариант, 802.11a, был ратифицирован раньше, чем 802.11b, но появился на рынке позднее. Устройства этого стандарта работают в диапазоне 5,8 ГГц с типовой скоростью 54 Мбит/с, но некоторые поставщики предлагают более высокие скорости, до 108 Мбит/с, в турборежиме. Третий, усовершенствованный вариант, 802.11g, работает в диапазоне 2,4 ГГц, как и 802.11b, со стандартной скоростью 54 Мбит/с и с более высокой (до 108 Мбит/с) в турборежиме. Большинство беспроводных сетей 802.11g способно работать с клиентами 802.11b благодаря обратной совместимости, заложенной в стандарте 802.11g, но практическая совместимость зависит от конкретной реализации поставщика. Основная часть современного беспроводного оборудования поддерживает два или более вариантов 802.11. Новый беспроводной стандарт, 802.16, именуемый WiMAX, проектируется с конкретной целью обеспечить беспроводной доступ для предприятий и жилых домов через станции, аналогичные станциям сотовой связи. Эта технология в данной статье не рассматривается.

Реальная дальность связи AP зависит от многих факторов, в том числе варианта 802.11 и рабочей частоты оборудования, изготовителя, мощности, антенны, внешних и внутренних стен и особенностей топологии сети. Однако беспроводной адаптер с узконаправленной антенной с большим коэффициентом усиления может обеспечить связь с AP и беспроводной сетью на значительном расстоянии, примерно до полутора километров в зависимости от условий.

Из-за общедоступного характера радиоспектра возникают уникальные проблемы с безопасностью, отсутствующие в проводных сетях. Например, чтобы подслушивать сообщения в проводной сети, необходим физический доступ к такому сетевому компоненту, как точка подсоединения устройства к локальной сети, коммутатор, маршрутизатор, брандмауэр или хост-компьютер. Для беспроводной сети нужен только приемник, такой как обычный сканер частот. Из-за открытости беспроводных сетей разработчики стандарта подготовили спецификацию Wired Equivalent Privacy (WEP), но сделали ее использование необязательным. В WEP применяется общий ключ, известный беспроводным клиентам и узлам доступа, с которыми они обмениваются информацией. Ключ можно использовать как для аутентификации, так и для шифрования. В WEP применяется алгоритм шифрования RC4. 64-разрядный ключ состоит из 40 разрядов, определяемых пользователем, и 24-разрядного вектора инициализации. Пытаясь повысить безопасность беспроводных сетей, некоторые изготовители оборудования разработали расширенные алгоритмы со 128-разрядными и более длинными ключами WEP, состоящими из 104-разрядной и более длинной пользовательской части и вектора инициализации. WEP применяется с 802.11a, 802.11b- и 802.11g-совместимым оборудованием. Однако, несмотря на увеличенную длину ключа, изъяны WEP (в частности, слабые механизмы аутентификации и ключи шифрования, которые можно раскрыть методами криптоанализа) хорошо документированы, и сегодня WEP не считается надежным алгоритмом.

В ответ на недостатки WEP отраслевая ассоциация Wi-Fi Alliance приняла решение разработать стандарт Wi-Fi Protected Access (WPA). WPA превосходит WEP благодаря добавлению протокола TKIP (Temporal Key Integrity Protocol) и надежному механизму аутентификации на базе 802.1x и протокола EAP (Extensible Authentication Protocol). Предполагалось, что WPA станет рабочим стандартом, который можно будет представить для одобрения комитету IEEE в качестве расширения для стандартов 802.11. Расширение, 802.11i, было ратифицировано в 2004 г., а WPA обновлен до WPA2 в целях совместимости с Advanced Encryption Standard (AES) вместо WEP и TKIP. WPA2 обратно совместим и может применяться совместно с WPA. WPA был предназначен для сетей предприятий с инфраструктурой аутентификации RADIUS (Remote Authentication Dial-In User Service - служба дистанционной аутентификации пользователей по коммутируемым линиям), но версия WPA, именуемая WPA Pre-Shared Key (WPAPSK), получила поддержку некоторых изготовителей и готовится к применению на небольших предприятиях. Как и WEP, WPAPSK работает с общим ключом, но WPAPSK надежнее WEP.

При построении беспроводных сетей также стоит проблема обеспечения их безопасности. Если в обычных сетях информация передается по проводам, то радиоволны, используемые для беспроводных решений, достаточно легко перехватить при наличии соответствующего оборудования. Принцип действия беспроводной сети приводит к возникновению большого числа возможных уязвимостей для атак и проникновений.

Оборудование беспроводных локальных сетей WLAN (Wireless Local Area Network) включает точки беспроводного доступа и рабочие станции для каждого абонента.

Точки доступа АР (Access Point) выполняют роль концентраторов, обеспечивающих связь между абонентами и между собой, а также функцию мостов, осуществляющих связь с кабельной локальной сетью и с Интернет. Каждая точка доступа может обслуживать несколько абонентов. Несколько близкорасположенных точек доступа образуют зону доступа Wi-Fi , в пределах которой все абоненты, снабженные беспроводными адаптерами, получают доступ к сети. Такие зоны доступа создаются в местах массового скопления людей: в аэропортах, студенческих городках, библиотеках, магазинах, бизнес-центрах и т. д.

У точки доступа есть идентификатор набора сервисов SSID (Service Set Identifier). SSID - это 32-битная строка, используемая в качестве имени беспроводной сети, с которой ассоциируются все узлы. Идентификатор SSID необходим для подключения рабочей станции к сети. Чтобы связать рабочую станцию с точкой доступа, обе системы должны иметь один и тот же SSID. Если рабочая станция не имеет нужного SSID, то она не сможет связаться с точкой доступа и соединиться с сетью.

Главное отличие между проводными и беспроводными сетями - наличие неконтролируемой области между конечными точками беспроводной сети. Это позволяет атакующим, находящимся в непосредственной близости от беспроводных структур, производить ряд нападений, которые невозможны в проводном мире.

При использовании беспроводного доступа к локальной сети угрозы безопасности существенно возрастают (рис. 2.5).

Рис. 2.5.

Перечислим основные уязвимости и угрозы беспроводных сетей.

Вещание радиомаяка. Точка доступа включает с определенной частотой широковещательный радиомаяк, чтобы оповещать окрестные беспроводные узлы о своем присутствии. Эти широковещательные сигналы содержат основную информацию о точке беспроводного доступа, включая, как правило, SSID, и приглашают беспроводные узлы зарегистрироваться в данной области. Любая рабочая станция, находящаяся в режиме ожидания, может получить SSID и добавить себя в соответствующую сеть. Вещание радиомаяка является «врожденной патологией» беспроводных сетей. Многие модели позволяют отключать содержащую SSID часть этого вещания, чтобы несколько затруднить беспроводное подслушивание, но SSID, тем не менее, посылается при подключении, поэтому все равно существует небольшое окно уязвимости.

Обнаружение WLAN. Для обнаружения беспроводных сетей WLAN используется, например, утилита NetStumber совместно со спутниковым навигатором глобальной системы позиционирования GPS. Данная утилита идентифицирует SSID сети WLAN, а также определяет, используется ли в ней система шифрования WEP. Применение внешней антенны на портативном компьютере делает возможным обнаружение сетей WLAN во время обхода нужного района или поездки по городу. Надежным методом обнаружения WLAN является обследование офисного здания с переносным компьютером в руках.

Подслушивание. Подслушивание ведут для сбора информации о сети, которую предполагается атаковать впоследствии. Перехватчик может использовать добытые данные для того, чтобы получить доступ к сетевым ресурсам. Оборудование, используемое для подслушивания в сети, может быть не сложнее того, которое используется для обычного доступа к этой сети. Беспроводные сети по своей природе позволяют соединять с физической сетью компьютеры, находящиеся на некотором расстоянии от нее, как если бы эти компьютеры находились непосредственно в сети. Например, подключиться к беспроводной сети, располагающейся в здании, может человек, сидящий в машине на стоянке рядом. Атаку посредством пассивного прослушивания практически невозможно обнаружить.

Ложные точки доступа в сеть. Опытный атакующий может организовать ложную точку доступа с имитацией сетевых ресурсов. Абоненты, ничего не подозревая, обращаются к этой ложной точке доступа и сообщают ей свои важные реквизиты, например аутентификационную информацию. Этот тип атак иногда применяют в сочетании с прямым «глушением» истинной точки доступа в сеть.

Отказ в обслуживании. Полную парализацию сети может вызвать атака типа DoS (Denial of Service) - отказ в обслуживании. Ее цель состоит в создании помехи при доступе пользователя к сетевым ресурсам. Беспроводные системы особенно восприимчивы к таким атакам. Физический уровень в беспроводной сети - абстрактное пространство вокруг точки доступа. Злоумышленник может включить устройство, заполняющее весь спектр на рабочей частоте помехами и нелегальным трафиком - такая задача не вызывает особых трудностей. Сам факт проведения DoS-атаки на физическом уровне в беспроводной сети трудно доказать.

Атаки типа «человек-в-середине». Атаки этого типа выполняются на беспроводных сетях гораздо проще, чем на проводных, так как в случае проводной сети требуется реализовать определенный вид доступа к ней. Обычно атаки «человек-в-середине» используются для разрушения конфиденциальности и целостности сеанса связи. Атаки MITM более сложные, чем большинство других атак: для их проведения требуется подробная информация о сети. Злоумышленник обычно подменяет идентификацию одного из сетевых ресурсов. Он использует возможность прослушивания и нелегального захвата потока данных с целью изменения его содержимого, необходимого для удовлетворения некоторых своих целей, например для спуфинга IP-адресов, изменения МАС-адреса для имитирования другого хоста и т. д.

Анонимный доступ в Интернет. Незащищенные беспроводные ЛВС обеспечивают хакерам наилучший анонимный доступ для атак через Интернет. Хакеры могут использовать незащищенную беспроводную ЛВС организации для выхода через нее в Интернет, где они будут осуществлять противоправные действия, не оставляя при этом своих следов. Организация с незащищенной ЛВС формально становится источником атакующего трафика, нацеленного на другую компьютерную систему, что связано с потенциальным риском правовой ответственности за причиненный ущерб жертве атаки хакеров.

Описанные выше атаки не являются единственными атаками, используемыми хакерами для взлома беспроводных сетей.