Антенна с круговой или с линейной поляризацией, что лучше для FPV? Особенности приема сигналов с круговой поляризацией

Cтраница 2


Круговой поляризации соответствует постоянная величина эдс независимо от угла поворота антенны.  

Оптическая схема для измерения КД. Излучение входит слева, отклоняется вниз зеркалами М и М, плоско поляризуется составной призмой Р и проходит через параллелепипед Френеля R, где подвергается двум внутренним отражениям, что приводит к сдвигу по фазе на четверть длины волны, т. е. к круговой поляризации. С помощью экрана А устраняется нежелательное излучение и пропускается нужное. Всю эту схему целиком помещают в кюветное отделение стандартных спектрофотометров, вторая схема (с противоположной ориентацией нужна для сравнения. Пробу помещают в точку b при измерении КД или в точку а при изучении пропускания плоскополяризованного излучения.  

Круговую поляризацию проводят в две ступени. Сначала поток излучения нужно сделать плоскополяризованным, а затем поляризованный поток пропустить через устройство, которое разлагает его на компоненты с правой и левой круговой поляризацией. Затем одну из компонент следует сдвинуть по фазе на одну четверть длины волны. Наиболее важное значение имеют три типа устройств для круговой поляризации: параллелепипед Френеля, электрооптический модулятор Покельса и фотоупругий модулятор.  

Круговую поляризацию, а отраженная волна - круговую поляризацию противоположного знака, что обусловлено изменением направления ее распространения на противоположное при прежнем направлении вращения вектора Е в пространстве.  


Круговую поляризацию можно получить, пропустив линейно поляризованный свет через пластинку в четверть волны так, чтобы плоскость поляризации падающего луча составляла угол 45 с главными направлениями в пластинке. Поэтому различают левую и правую эллиптическую (круговую) поляризацию.  

Волна круговой поляризации может быть определена как такое излучение, при котором вектор электрического поля постоянной амплитуды вращается вокруг направления распространения, делая один оборот за период частоты колебаний.  

Возбудитель круговой поляризации представляет собой отрезок прямоугольного волновода, на широкой стенке которого закреплен круглый волновод, связанный с ним тремя щелями связи.  


Направление круговой поляризации можно изменить на обратное, меняя на 90 поляризацию падающего света.  

Перевод круговой поляризации в линейную достигается введением при помощи какого-либо устройства дополнительной разности фаз б л / 2 двух волн, поляризованных во взаимно перпендикулярных направлениях. Обычно для этой цели используется пластинка в четверть длины волны (см. гл. Призма Френеля фактически также служит устройством, обеспечивающим введение дополнительной разности фаз двух волн, поляризованных во взаимно перпендикулярных направлениях. Такой способ обладает тем преимуществом, что достигаемый сдвиг по фазе мало зависит от длины волны падающего света.  

При круговой поляризации длина вектора не меняется. Наиболее распространенными видами поляризации являются вертикальная и горизонтальная.  

Волна круговой поляризации падает на антенну круговой поляризации.  

Антенна круговой поляризации может, конечно, применяться и для приема линейно поляризованных волн, так же как и линейно поляризованная антенна для приема волн круговой поляризации.  

Возбудитель круговой поляризации представляет собой отрезок прямоугольного волновода, на широкой стенке которого закреплен круглый волновод, связанный с ним тремя щелями связи. Расположение щелей рассчитано так, что обеспечивается возбуждение прямой и обратной волн круговой поляризации независимо от частоты во всем рабочем диапазоне частот прибора. На широкой стенке имеется зонд связи с переходом на коаксиальный разъем.  

Пусть в направлении оси OZ распространяются две электромагнитные волны. Напряженность электрического поля одной волны колеблется в направлении оси OY по закону EY(z, t) = Eosin(kz-wt) , а другой - в направлении оси OX по закону Ex(z, t) = Eocos(kz-wt) .Фаза колебаний волны с электрическим полем, ориентированным по оси OX , отстает на p/2 от фазы другой волны. Выясним характер колебаний вектора напряженности результирующей волны.

Можно просто убедиться, что модуль результирующей волны со временем не изменяется и всегда равен Eo . Тангенс угла между осью OX и вектором напряженности электрического поля в точке z равен
tgj===tg(kz-wt). (1)

Из (1) следует, что угол между вектором напряженности электрического поля волны и осью OX - j - со временем изменяется по закону j(t)=kz-wt .Вектор напряженности электрического поля равномерно вращается с угловой скоростью, равной w . Конец вектора напряженности электрического поля движется по винтовой линии (см. рисунок 27). Если смотреть на изменение вектора напряженности из начала координат в направлении распространения волны, то вращение происходит по часовой стрелке, т.е. в направлении вектора магнитной индукции. Такую волну называют право поляризованной по кругу.

Электромагнитная волна с круговой поляризацией, падая на вещество, передает вращение электронам вещества.

Итог: правополяризованная электромагнитная волна обладает моментом импульса, направленным вдоль распространения волны, левополяризованная электромагнитная волна обладает моментом импульса, направленным против распространения волны. Этот результат будет использоваться при изучении квантовой физики.

При сложении плоских волн линейной поляризации с плоскостями, ориентированными под прямым углом и с произвольным сдвигом фаз a , результирующее изменение вектора напряженности в данной точке z может быть вращением с одновременным периодическим изменением модуля. Конец вектора напряженности электрического поля волны в этом случае движется по эллипсу. Поляризация данного типа называется эллиптической. Она может быть как левой, так и правой. На рисунке 29 изображены траектории конца вектора напряженности результирующего электрического поля двух волн одинаковой амплитуды с горизонтальной и вертикальной плоскостями поляризации при различных значениях сдвига фаз – от 0 до p . При сдвиге фаз, равномнулю, результирующая волна является плоскополяризованной с плоскостью поляризации, составляющей угол p/4 с горизонтальной плоскостью. При сдвиге фаз, равном p/4 , – эллиптическую поляризацию, при p/2 – круговую поляризацию, при 3p/4 – эллиптическую поляризацию, при p – линейную поляризацию.

В том случае, когда волна представляет собой сумму случайно поляризованных составляющих с хаотическим набором сдвигов фаз, все эффекты поляризации теряются. Говорят, что электромагнитная волна в этом случае не поляризована.

При рассмотрении плоской волны в однородной изотропной среде было показано, что она является поперечной, т.е. векторы иперпендикулярны направлению распространения (оси). В целях упрощения полагалось, что векторориентирован вдоль оси, и было установлено, что в этом случае векторориентирован по оси(рисунок Рисунок 50).

    −Простейший случай линейно поляризованной волны

Однако следует иметь в виду, что ориентация векторов иотносительно координатных осей зависит от источника, создающего волну. В общем случае направления векторов могут отличаться от направления координатных осей, а значит, каждый из векторов поля может иметь составляющие по обеим координатным осям, причем начальные фазы составляющих могут отличаться. Это приводит к тому, что положение векторав пространстве будет отличаться от простейшего случая, когда этот вектор всегда колеблется в плоскости.

Поляризация электромагнитной волы − ориентация в пространстве вектора напряженности электрического поля .

Различают три вида поляризации: линейную, круговую и эллиптическую. Как будет показано, все эти три вида являются частными случаями общего эллиптического представления.

      1. Линейная поляризация

Простейшим случаем является линейная поляризация. Если рассмотреть выражение для вектора :

то окажется, что половину периода направление вектора совпадает с положительным направлением оси, а вторую половину − противоположно ему (рисунок Рисунок 51). Таким образом, в фиксированной точке пространстваконец векторас течением времени перемещается вдоль отрезка прямой линии, а величина вектора изменяется в интервале. Волны, имеющие такой характер ориентации вектора, называются линейно поляризованными. Плоскость, проходящую через направление распространение волны и вектор, называют плоскостью поляризации. В рассматриваемом примере плоскостью поляризации является плоскость.

    −Электромагнитная волна с линейной поляризацией

Линейная поляризация исключительно часто применяется в антенной технике. Так, все местное (не спутниковое) теле- и радиовещание производится на радиоволнах линейной поляризации. Положение плоскости поляризации полностью определяется ориентацией приемных и передающих антенн. Так как плоскостью линейной поляризации может быть как плоскость параллельная земной поверхности, так и перпендикулярная ей, то обычно их называют соответственно горизонтальной и вертикальной плоскостью поляризации. Так, телевещание обычно производится в горизонтальной плоскости поляризации, а радиовещание − в вертикальной, хотя бывают и исключения.

      1. Суперпозиция двух линейно поляризованных волн

Предположим теперь, что волна создается более сложной излучающей структурой и вектор имеет две составляющиеи, которые изменяются либо синфазно, либо с некоторым фазовым сдвигом. Векторв этом случае тоже имеет две составляющиеи, связанные с компонентами. Тогда в общем случае выражение для вектораплоской волны в среде без потерь записывается в виде

где и− амплитуды составляющихисоответственно, аи− фазы этих составляющих в точкепри. Волну такого типа можно рассматривать как суперпозицию двух плоских линейно поляризованных волн со взаимно перпендикулярными плоскостями поляризациии, распространяющихся в одном направлении вдоль оси. Характер изменения векторас течением времени в фиксированной точке пространства зависит от соотношения между начальными фазами,и от амплитуд,.

Рассмотрим, что произойдет при отдельных частных случаях такой волны. Для этого рассмотрим угол между осью и векторомв некоторой фиксированной точке пространства. Очевидно, что величина этого угла зависит от соотношения между мгновенными значениями компонент вектора(рисунок Рисунок 52):

то есть, зависит от соотношения величин,и,и в общем случае меняется со временем. Для получения случая линейной поляризации необходимо, чтобы составляющие векторабыли синфазными или противофазными. Положим сначала, тогда

В этом случае вектор в любой момент времени лежит в плоскости, проходящей через осьи составляющей уголс плоскостью.

    −Линейно поляризованная волна

Аналогичное явление имеет место также в том случае, когда разность между начальными фазами равна целому числу :

Очевидно, что при илилинейно поляризованная волна превращается в волну с чисто горизонтальной или чисто вертикальной поляризацией.

    − Горизонтальная и вертикальная поляризация

Рассмотрим второй частный случай. Пусть амплитуды составляющих иравны, а начальные фазы отличаются на:

Подставляя эти значения в выражение для угла , получим:

откуда следует, что

где − целое число. Это равенство означает, что уголв фиксированной точке пространстваувеличивается с течением времени. Величина векторапри этом остается неизменной:

Таким образом, в фиксированной точке пространства вектор , оставаясь неизменным по величине, вращается с угловой частотойвокруг направления оси. Конец вектора при этом описывает окружность (рисунок Рисунок 54). Волны такого типа называются волнами с круговой поляризацией.

    −Круговая поляризация плоской волны

Нетрудно убедиться также, что волна будет иметь круговую поляризацию не только в случае , но и

Вдоль направления распространения (вдоль оси ) в фиксированный момент временив среде без потерь конец вектораописывает винтовую линию с шагом, равным длине волны. Проекция этой линии на плоскостьобразует окружность. С течением времени эта винтовая линия перемещается вдоль осипо цилиндру с фазовой скоростью.

В зависимости от направления вращения вектора вокруг оси распространения различают волны с левой и правой круговой поляризацией. В случае правой поляризации вектор вращается по часовой стрелке, если смотреть вдоль направления распространения, а в случае левой круговой поляризации − против стрелки. В рассмотренном примере приволна имеет правую поляризацию. Очевидно, что такая же поляризация будет в случае

волна имеет левую круговую поляризацию.

Вектор однородной волны везде и в любой момент времени перпендикулярен векторуи пропорционален ему по величине. Таким образом, в отличие от линейной поляризации, поле бегущей волны с круговой поляризацией в любой момент времени ни в одной точке пространства не равно нулю.

В случае среды с потерями линия, соединяющая концы векторов в один м тот же момент времени в разных точках оси , представляет собой спираль с радиусом, который изменяется вдоль оси по закону.

В самом общем случае распространения волны, когда конец векторабудет описывать при фиксированном и переменномв пространстве некий эллипс (рисунок Рисунок 55). Полуоси эллипса в общем случае не совпадают с осями координат.

    −Эллиптически поляризованная волна

Для определения эллиптичности поля используется коэффициент эллиптичности, характеризующий отношение малой полуоси эллипса к большой:

При эллипс вырождается в окружность, этот случай соответствует электромагнитной волне с круговой поляризацией. Если, то эллипс вырождается в прямую линию − это линейно поляризованная волна.

При рассмотрении эллиптической и круговой поляризаций нами рассматривалась суперпозиция двух линейно поляризованных волн. Как мы увидели, поле с любым типом поляризации можно представить суммой двух волн, поляризованных линейно в двух ортогональных плоскостях. Можно доказать и обратное: эллиптически или линейно поляризованную волну можно представить в виде суммы двух волн с круговой поляризацией и противоположными направлениями вращения.

В рассмотренном примере линейно поляризованной волны предполагалось, что вектор во всех точках направлен параллельно или антипараллельно осиx (см. рис. 1.7). В общем случае у плоской гармонической волны, распространяющейся вдоль осиz , отличны от нуля обе компонентыE x иE y , а вектор электрического поля имеет вид

где ,– единичные векторы, направленные вдоль осейО x ,Oy декартовой системы координат.

Рассмотрим волну, компоненты электрического поля которой изменяются по гармоническому закону

где сдвиг фаз между колебаниями.

Найдем уравнение траектории, по которой движется конец вектора в плоскостиz = const . Перепишем в виде

и с помощью исключим из этого равенства cos (t kz ) иsin (t kz ):

Напомним, что амплитуды E 10 иE 20 предполагаются положительными числами. Перенесем первое слагаемое правой части на левую сторону, делим обе части наE 20 и возводим их в квадрат.

Раскрываем скобки и приводим уравнение к виду

Соотношение является уравнением конического сечения. Сечениеимеет форму эллипса, так как соответствующий детерминант неотрицателен, т. е.

Эллипс вписан в прямоугольник, стороны которого имеют длины 2E 10 и 2E 10 (рис. 1.8).Онкасается сторон прямоугольника в точкахAA (E 10 ,E 20 cos) иBB (E 10 cos,E 20).

Итак, в общем случае при распространении плоской монохроматической световой волны конец вектора в плоскостиz = const описывает эллипс. Аналогично ведет себя и вектор напряженности магнитного поля. Такая волна называетсяэллиптически поляризованной .

Представить себе электрическое поле такой волны при фиксированном t можно так: на поверхности прямого эллиптического цилиндра проведена винтовая линия, начала всех векторовнаходятся в точках оси цилиндра, концына винтовой линии, причем сам вектор везде перпендикулярен оси.

Правая и левая эллиптические поляризации

Двигаясь по эллипсу в плоскости z = const , конец вектораможет вращаться по часовой или против часовой стрелки. Для того чтобы различить эти два состояния, в оптике вводят понятияправой поляризации (для наблюдателя, смотрящего навстречу световому лучу, вращениепроисходит по часовой стрелке) илевой поляризации (вращение векторав противоположном направлении). Покажем, что направление вращения векторазависит от знака разности фаз. Выберем момент времениt 0 , для которогоt 0 –kz = 0. В этот момент, согласно формулам и,

Из формулы видно, что в тот момент, когда конец вектора достигает крайней правой точки своей траектории (рис. 1.8), имеемdE y /dt < 0, если 0 <<, иdE y /dt > 0, если – < < 0. Очевидно, что первый из этих случаев соответствует право поляризованной волне, а второй - лево поляризованной.

Итак, в общем случае плоская монохроматическая волна имеет правую или левую эллиптическую поляризацию. Полная характеристика эллипса поляризации дается тремя параметрами E 10 ,E 20 и. И, как видно из рис. 1.8, оси эллипса могут быть не параллельны осямOx и Oy . Однако если заданыE 10 ,E 20 и разность фаз, относящиеся к произвольному положению осей, и если(0 </2) - угол, определяемый соотношением

то главные полуоси эллипса a и b и угол  , который большая ось образует с осьюOx , находятся из формул

где (  )–вспомогательный угол, определяющий форму и ориентацию эллипса колебаний, а именно:

Численное значение tgопределяет величину отношения осей эллипса, а знак прихарактеризует два варианта, которые можно использовать при описании эллипса. Из последней формулы видно, что при правой эллиптической поляризации, когдаsin > 0, то уголменяется в пределах 0 </4, что соответствует знаку "+" в формуле. Соответственно для левой поляризациизнак "–".

Параметры a ,b иможно определить на опыте, а, зная эти величины, по формулам можно рассчитать амплитудыE 10 ,E 20 и разность фаз.

Поляризация электромагнитных волн.

Для ЭМВ, распространяющихся в какой-либо среде, существует понятие поляризации. Поляризация ЭМВ - это упорядоченность в ориентации векторов напряженности электрического и магнитного полей в плоскости перпендикулярной вектору скорости распространения ЭМВ. Различают эллиптическую, круговую и линейную поляризации.

Характер поляризации определяется конструкцией и ориентацией передающей антенны. В случае линейной поляризации вектор Е, периодически изменяясь, в процессе распространения остается перпендикулярным самому себе. Антенна в виде вертикального вибратора излучает вертикальную линейно-поляризованную волну. Для приема без потерь вибратор приемной антенны должен быть ориентирован также вертикально

Для создания горизонтальной линейно-поляризованной волны передающие вибраторы антенны должны располагаться горизонтально. Однако для спутниковой связи радиоволны в процессе распространения пронизывают ионосферу, находящуюся в магнитном поле Земли. В результате происходит вращение плоскости поляризации линейно-поляризованной волны (эффект Фарадея).

Ионосфера оказывается средой с двойным лучепреломлением, и радиоволна, распространяющаяся через нее, расщепляется на две составляющие. Эти составляющие распространяются в ионосфере с различными фазовыми скоростями. Поэтому при прохождении некоторого расстояния между ними появляется фазовый сдвиг, который приводит к повороту плоскости поляризации. В результате рассогласования поляризации волны, пришедшей в точку приема, и поляризации приемной антенны происходит потеря энергии - возникают поляризационные замирания. Для предотвращения замираний необходимо использовать антенны с круговой поляризацией, при которой вектор Е вращается с частотой радиоволны, описывая при распространении винтовую линию. При этом величина вектора Е останется постоянной. На пути равном длине волны вектор Е поворачивается на 360 градусов.

Для создания антенны с круговой поляризацией необходимо иметь два передающих вибратора, смещенных в пространстве на 90 градусов один относительно другого. Они должны питаться токами равной амплитуды со сдвигом фазы на 90 градусов.

Радиоволны с круговой поляризацией излучают, например, турникетная антенна. Прием волн с круговой поляризацией возможен как на однотипные (турникетная, спиральная) антенны, так и на обычные вибраторы

В зависимости от направления вращения вектора Е круговая поляризация может быть:

  • · левовинтовая;
  • · правовинтовая.